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Protein foundation models, particularly protein language mod-
els, have demonstrated strong success in learning meaning-
ful representations of proteins using transformer architectures
pretrained on large-scale protein datasets with self-supervised
learning. These representations have been highly effective for
downstream tasks such as predicting protein functions and
properties. However, most current protein foundation mod-
els focus on pretraining with amino acid sequences, often ne-
glecting additional modalities like protein structures and re-
lated literature, both of which provide valuable insights. To ad-
dress this gap, we propose a multi-modal pretraining approach
that integrates three key modalities - protein sequences, struc-
tures, and literature text. In our framework, the protein se-
quence modality serves as the anchor, with the other two modal-
ities aligned to it, enhancing the model’s capacity to capture
more comprehensive protein information. ProteinAligner out-
performed state-of-the-art protein foundation models in pre-
dicting protein functions and properties across diverse down-
stream tasks.

Protein foundation model, multi-modal learning, protein function prediction,
protein property prediction
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Introduction
Proteins play a fundamental role in virtually all biological
processes. Understanding their functions and properties
is central to advancing fields such as drug discovery (1),
diagnostics (2), and biotechnology (3). Recent advances in
artificial intelligence, particularly in transformer-based mod-
els (4), have led to the development of protein foundation
models capable of learning rich representations from large-
scale protein datasets (5–11). These models, particularly
protein language models (PLMs) (5–7, 10, 11), have shown
remarkable success in performing various downstream
tasks such as protein function prediction (12, 13), property
prediction (14, 15), structure prediction (16, 17), and protein
design (18, 19).

Despite these successes, current PLMs predominantly
focus on amino acid sequences while overlooking the wealth

of complementary information available in other modalities.
Protein structures, for example, provide critical three-
dimensional information that is essential for understanding
how proteins fold and interact with other molecules, directly
influencing their biological functions (20). The spatial
arrangement of amino acids, which governs interactions
such as binding affinities and functional sites, cannot be
readily inferred from sequence data alone (21, 22), making
the integration of structural data crucial for a more compre-
hensive understanding of protein behavior. Similarly, the
vast amount of biological literature contains experimentally
validated insights into protein mechanisms, behavior, and
interactions that are often context-specific and difficult to
infer from sequences or structures alone (23, 24). Litera-
ture captures critical information about post-translational
modifications, protein dynamics in various environments,
and interaction networks - details accumulated from years
of experimental studies. By incorporating these additional
modalities - protein structures and related literature - protein
foundation models can move beyond sequence prediction
to a more robust, context-aware understanding of protein
biology. This multi-modal integration has the potential to
greatly enhance the representational power of these models,
enabling more accurate predictions of protein functions
and behaviors in diverse biological scenarios. While some
studies have explored the use of two modalities, such as
protein sequence and text (24–26) or protein structure
and sequence (8, 9, 27), the simultaneous integration of
three modalities for pretraining protein foundation models
remains underexplored.

To address this gap, we introduce ProteinAligner, a
multi-modal pretraining framework that combines protein
sequences, structures, and literature text. Our framework
aligns these modalities with the protein sequence as the
anchor, enabling the model to learn richer and more
comprehensive representations of proteins. By integrating
diverse protein-related data, ProteinAligner improves the
model’s ability to capture intricate biological phenomena,
paving the way for more accurate predictions of protein
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functions and properties. ProteinAligner utilizes three
specialized encoders - a sequence encoder, a structure
encoder, and a text encoder - to learn representations for
each modality. These distinct representations are projected
into a shared latent space, enabling direct comparison
across modalities. By employing a contrastive alignment
strategy (28), ProteinAligner uses protein sequences as
the anchor to align corresponding structures and textual
descriptions, encouraging similar representations for the
same protein and dissimilar representations for different
proteins. This approach not only maximizes data utiliza-
tion by allowing pretraining on incomplete modality data
but also captures the comprehensive biological insights
provided by each modality. Recently, another independent
study (29) also explored learning protein representations
across three modalities. Their work and ours were developed
independently, with approaches and experiments conceived
separately.

ProteinAligner demonstrated superior performance
compared to state-of-the-art baselines across various
downstream prediction tasks, including detecting type I
anti-CRISPR activities, predicting pathogenic missense
variants, predicting protein thermostability, identifying
potent bioactive peptides, and estimating the minimum
inhibitory concentration of antimicrobial peptides.

Results
ProteinAligner overview. ProteinAligner is a multi-modal
foundation model for protein representation learning,
integrating three distinct modalities: amino acid (AA)
sequences, 3D structures, and textual descriptions of pro-
teins. ProteinAligner contains three encoders - a protein
sequence encoder, a protein structure encoder, and a text
encoder - each dedicated to learning representations for its
corresponding modality (Fig. 1a). The protein sequence en-
coder is a protein language model that uses the transformer
architecture (4) to extract a representation for the input AA
sequence. It represents each AA as a token and employs
self-attention (4) to capture long-range dependencies among
AAs. The protein structure encoder utilizes Geometric
Vector Perceptron Graph Neural Network (GVP-GNN) (30)
layers for geometric representation learning of the input
protein structure, followed by transformer layers that capture
long-range interactions between atomic coordinates. The
text encoder employs a transformer architecture, utilizing
self-attention to capture long-range dependencies between
language tokens. Specifically, we employed ESM (5), a
leading protein language model, as the protein sequence
encoder, and ESM-IF1 (9) as the protein structure encoder.
ESM consists of 33 transformer layers and 650 million
parameters, pretrained on 65 million protein sequences.
ESM-IF1 features 20 layers and 124 million parameters,
pretrained on 12 million computed protein structures and
16,000 experimentally verified structures. The text encoder
includes eight transformer layers with a total of 78 million

parameters. ProteinAligner uses modality-specific linear
projection modules to map the representations extracted by
different encoders into a shared latent space with matching
dimensions, ensuring that representations from different
modalities are directly comparable. ProteinAligner consists
of 867 million model parameters in total.

ProteinAligner performs joint pretraining of the three
encoders by leveraging a modality alignment strategy, using
protein sequences as the anchor modality to align the other
two modalities (Fig. 1a). Specifically, given a protein
sequence and a protein structure, if they correspond to the
same protein, ProteinAligner encourages their represen-
tations to be similar, and dissimilar otherwise. The same
principle applies for protein text and protein sequences,
with representations aligned if they refer to the same protein
and separated if not. This alignment is accomplished by
minimizing contrastive losses (28, 31) defined on the rep-
resentations of sequence-structure pairs and sequence-text
pairs. ProteinAligner does not require all three modalities to
be present simultaneously for each protein in the pretraining
data. The alignment can be performed as long as the protein
sequence and at least one additional modality - either struc-
ture or text - are available. We chose protein sequences as
the anchor for alignment because they are the most prevalent
data modality in protein databases; nearly every protein has
an associated amino acid sequence, whereas information
on structures or textual descriptions is often incomplete.
By using sequences as the anchor, we can maximize data
utilization, ensuring the inclusion of as many proteins as
possible in the alignment process. With pretrained encoders
in place, they can be fine-tuned on task-specific data to
handle a variety of downstream tasks. During this process,
the encoders are integrated with task-specific modules,
creating models that are customized for specific prediction
tasks.

We curated a large-scale pretraining dataset for Pro-
teinAligner by integrating data from the UniProtKB/Swiss-
Prot (32) and RCSB PDB (33) databases. The dataset
consists of 290,480 proteins, each with an amino acid
sequence and a corresponding textual description. 133,726
of them are also associated with protein structures. In
total, the dataset contains 133,726 sequence-structure pairs
and 290,480 sequence-text pairs. The textual descriptions
provide information about the proteins’ functions. Both the
structures and the functional descriptions were experimen-
tally validated and reviewed by domain experts. Fig. 1b
shows the distribution of protein taxonomy, functions, and
types in the dataset.

ProteinAligner detects type I anti-CRISPR activities.
We evaluated the effectiveness of ProteinAligner in detect-
ing type I anti-CRISPR (Acr) activities. Acr proteins are
produced by certain viruses, such as bacteriophages, or
mobile genetic elements to inhibit the type I CRISPR-Cas
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Fig. 1 | ProteinAligner facilitates multi-modal pretraining of protein foundation models by integrating diverse modalities including amino acid sequences, 3D
structures, and textual data. a, ProteinAligner consists of three encoders: a protein sequence encoder based on ESM, a protein structure encoder based on ESM-
IF1, and a transformer-based protein text encoder. These encoders learn representations for protein sequences, structures, and text, respectively. Modality-specific
projection modules then transform these representations into a shared latent space, enabling direct comparison across modalities. Using protein sequences as the
anchor, ProteinAligner aligns the other two modalities by minimizing contrastive losses. After pretraining, the encoders can be fine-tuned with task-specific data for various
downstream applications. b, Our curated pretraining data for ProteinAligner spans a diverse range of proteins from various taxonomic groups, functions, and types. The
upper chart displays the distribution of protein taxonomy, with the inner ring representing superkingdoms and the outer ring representing kingdoms. The lower chart
illustrates the distribution of protein functions and types.
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Fig. 2 | ProteinAligner outperforms state-of-the-art protein foundation models in various downstream tasks. a-b, ProteinAligner’s sequence encoder outperforms
ESM and ProST in detecting type I anti-CRISPR activity (a) and pathogenic missense variants (b), achieving higher accuracy, F1 scores (which balance precision and
recall), and area under the ROC curve (AUC). c, ProteinAligner’s structure encoder outperforms ESM-IF1 in predicting protein thermostability.
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immune system in bacteria and archaea (34). The CRISPR-
Cas system functions as an adaptive immune mechanism
in these microorganisms, recognizing and cleaving foreign
DNA from viral invaders. In type I systems, which involve
multi-subunit Cas proteins, Acr proteins disrupt this defense
by preventing Cas proteins from binding to target DNA
or carrying out their cleavage functions. Understanding
and detecting these Acr activities is crucial for controlling
CRISPR-Cas systems in genetic engineering and leveraging
bacteriophages to combat antimicrobial resistance.

Given the amino acid sequences of an Arc protein and
a set of Cas proteins from a CRISPR-Cas system, we
employed ProteinAligner’s pretrained sequence encoder
to extract representation vectors for each protein. These
vectors were then input into a convolutional neural network
(CNN) based classification module to predict whether the
Arc protein could inhibit the CRISPR-Cas system. We
utilized the Acr-CRISPR-Cas inhibition dataset (34) for
experiments, which comprises 227 pairs of Acr proteins
and CRISPR-Cas systems, including 132 experimentally
verified positive pairs (Acr inhibits CRISPR-Cas) and 95
negative pairs (Acr does not inhibit CRISPR-Cas). The
dataset was randomly split into training and test sets in
an 8:2 ratio. We compared ProteinAligner to ESM (5), a
protein language model pretrained on protein sequences,
and ProtST (24), which builds on ESM by incorporating
contrastive pretraining between protein sequences and
text. We used area under the ROC curve (AUC), accuracy,
precision, recall, and F1 score as evaluation metrics.

ProteinAligner demonstrated significantly better per-
formance across all metrics in detecting type I anti-CRISPR
activity compared to ESM (Fig. 2a). For instance,
ProteinAligner achieved an AUC of 0.852, substantially sur-
passing ESM’s AUC of 0.732. Similarly, ProteinAligner’s
F1 score of 0.84 was considerably higher than ESM’s F1
score of 0.77. Moreover, ProteinAligner achieved superior
performance compared to ProtST (Fig. 2a).

ProteinAligner predicts pathogenic missense vari-
ants. Pathogenic missense variants refer to specific types
of genetic mutations where a single nucleotide change in a
DNA sequence results in the substitution of one amino acid
for another in the corresponding protein (35). This change
can disrupt the protein’s normal function, potentially leading
to diseases or disorders. In the context of pathogenicity,
these variants are considered harmful because they alter
the protein’s structure or function in a way that impairs
biological processes. Depending on the protein’s role,
this can lead to a variety of outcomes, from minor effects
to severe genetic disorders, such as cystic fibrosis, sickle
cell disease, or certain forms of cancer. Identifying and
characterizing pathogenic missense variants is crucial in
genetic research and clinical diagnostics for understanding
inherited diseases and developing targeted treatments.

The inputs for this task are two protein sequences: the
wildtype sequence (before mutation) and the mutant
sequence (after mutation). We employed the sequence
encoder in ProteinAligner to extract representation vectors
for both proteins. These vectors were then concatenated
and passed through a multi-layer perceptron to predict
whether the mutant protein is pathogenic. We used 200
labeled examples from the VariPred (36) dataset, with 100
examples allocated for training and the remaining 100 for
testing. ProteinAligner outperformed both ESM and ProtST
(Fig. 2b). For example, it achieved an F1 score of 0.71
compared to 0.667 for ESM and 0.676 for ProtST.

ProteinAligner predicts protein thermostability. Pro-
tein thermostability refers to a protein’s ability to maintain
its structure and function when exposed to elevated temper-
atures (37). This characteristic is critical because proteins
typically lose their functional shape, or denature, at high
temperatures, rendering them ineffective. Thermostability
is an important factor in various biological processes and
industrial applications. For instance, enzymes with high
thermostability are essential in industries such as biotech-
nology and pharmaceuticals, where reactions often require
high temperatures for optimal efficiency. Predicting protein
thermostability allows researchers to design or engineer pro-
teins that can withstand challenging conditions, improving
their functionality and longevity. Additionally, thermostable
proteins are valuable in drug design, as they tend to have
better shelf lives and performance under physiological
conditions. Accurate predictions of thermostability are
crucial for advancing protein engineering and enhancing the
reliability of proteins in various applications.

Unlike the previous two tasks, this task takes the 3D
structures of proteins, specifically their atomic coordinates,
as input. The 3D structure of each protein was processed
through ProteinAligner’s structure encoder, generating a
representation vector. This vector was then passed through
a multi-layer perceptron to predict the protein’s thermosta-
bility class. We employed the HP-S2C5 dataset (38), which
comprises 1,040 proteins spanning five thermostability
classes: Hyperthermophilic (above 75◦C), Thermophilic
(45-75◦C), Mesophilic (25-45◦C), Psychrophilic (5–25◦C),
and Cryophilic (−20–5◦C). 936 proteins were used for
training and 104 for testing. We compared ProteinAligner
with ESM-IF1 (9), a protein structure encoder pretrained
on both protein structures and sequences. ProteinAligner
remarkably outperformed ESM-IF1 (Fig. 2c), achieving an
F1 score of 0.608 compared to 0.559, and an accuracy of
0.577 compared to 0.542.

ProteinAligner identifies potent bioactive peptides.
Bioactive peptides are short chains of amino acids with
specific biological activities (39). They play critical roles
in regulating physiological processes, including immune
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Fig. 3 | ProteinAligner surpasses ESM and ProtST in identifying potent bioactive peptides. It demonstrated superior performance in predicting blood-brain barrier
penetration (a), umami taste induction (b), antioxidant activity (c), and antiviral properties (d). Model performance was evaluated using accuracy (ACC), balanced accuracy
(BACC), sensitivity (SN), specificity (SP), Matthews correlation coefficient (MCC), and the area under the ROC curve (AUC).
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Fig. 4 | ProteinAligner outperforms ESM and ProtST in identifying potent bioactive peptides. It achieved superior performance in predicting antiparasitic effects
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function, metabolism, and cardiovascular health. Identifying
bioactive peptides is important because they offer significant
potential for developing new therapeutic agents and func-
tional foods. These peptides can serve as natural, targeted
treatments with fewer side effects compared to traditional
drugs, and their discovery can lead to advancements in both
medical applications and nutrition, benefiting public health
and disease prevention efforts.

Given the amino acid sequence of a peptide, we em-
ployed ProteinAligner’s protein sequence encoder to extract
a representation vector, which was subsequently input into
a convolutional neural network (CNN)-based classification
head to predict whether the peptide has a specific bioactivity.
We examined eight distinct bioactivities, including blood-
brain barrier penetration (40), umami taste induction (41),
antioxidant activity (42), antiviral properties (43), antipar-
asitic effects (44), T-cell immune response induction (45),
inhibition of dipeptidyl peptidase IV (DPP-IV) (46), and
modulation of brain activity (47). Given that a peptide can
exhibit multiple bioactivities concurrently, we approached
each bioactivity prediction as a binary classification task,
avoiding the use of a multi-class model that would assign
the peptide to a single category. Separate datasets were
used for each bioactivity (Methods). The evaluation metrics
for this task included accuracy (ACC), balanced accuracy
(BACC) (48), sensitivity (SN), specificity (SP), Matthews
correlation coefficient (MCC) (49), and the area under the
ROC curve (AUC).

ProteinAligner consistently surpassed ESM and ProtST
across all eight evaluated tasks (Figs. 3 and 4). For example,
in predicting blood-brain barrier penetration, ProteinAligner
achieved an AUC of 0.824, outperforming both ESM
(0.788) and ProtST (0.767). Similarly, in predicting T-cell
immune response induction, ProteinAligner reached an
AUC of 0.746, exceeding the performance of ESM (0.678)
and ProtST (0.706).

ProteinAligner predicts the minimum inhibitory
concentration (MIC) of antimicrobial peptides. Antimi-
crobial peptides (AMPs) are short chains of amino acids
that serve as a crucial part of the innate immune response in
many organisms, exhibiting broad-spectrum activity against
bacteria, viruses, fungi, and even cancer cells (50). They
function by disrupting microbial membranes, leading to cell
death, and are considered potential alternatives to conven-
tional antibiotics, especially in the face of rising antibiotic
resistance. The minimum inhibitory concentration (MIC) is
the lowest concentration of an antimicrobial agent, such as
an AMP, that prevents visible microbial growth. Accurately
predicting the MIC values of AMPs is essential as it allows
for the optimization of peptide design for therapeutic use,
minimizes potential toxicity, and helps in the early-stage
screening of effective peptides before in vitro or in vivo
testing. This predictive capability is vital for accelerating

the development of AMPs as a novel class of antimicrobial
agents in clinical applications.

Given the amino acid sequence of a peptide, we ap-
plied ProteinAligner’s protein sequence encoder to extract a
representation vector, which was then fed into a multi-layer
perceptron-based regression module to predict the MIC of
the peptide against a specific pathogen. We focused on
Escherichia coli (E. coli), a gram-negative bacterium. We
utilized the dataset from (51), comprising 3,695 training
and 924 testing examples. Mean squared error was used
as the evaluation metric. ProteinAligner achieved lower
prediction error compared to ESM and ProtST (Extended
Data Fig. 1).

Discussion
ProteinAligner demonstrates superior performance com-
pared to models like ESM and ProtST by employing a
multi-modal approach that integrates sequences, structures,
and textual information, offering a more comprehensive
understanding of proteins (Figs. 2a, 2b, 3, 4, and Ex-
tended Data Fig.1). While ESM focuses on learning from
amino acid sequences, ProteinAligner incorporates protein
structures, which provide critical insights into folding,
stability, and interaction dynamics that sequences alone
cannot reveal. Additionally, by drawing from experimental
literature, ProteinAligner captures contextual information
like functional annotations and post-translational modi-
fications, bridging gaps in sequence and structure-based
models. The multi-modal alignment in a shared latent space
enables ProteinAligner to generate representations that are
not only sequence-based but also grounded in functional and
structural knowledge, leading to more accurate predictions.
Compared to ProtST, which integrates sequence and text
data, ProteinAligner adds the essential dimension of protein
structure, crucial for understanding spatial arrangements and
physical properties. This enriched representation enables the
model to better predict protein functions influenced by struc-
tural conformation, outperforming ProtST’s dual-modality
approach. Additionally, ProteinAligner surpasses ESM-IF1
(Fig. 2c), which combines sequences and structures, by in-
corporating textual descriptions that provide further context
from experimental literature. ProteinAligner’s contrastive
alignment strategy ensures that the representations from
sequences, structures, and text are effectively integrated,
enhancing its predictive capacity across different tasks.
This holistic approach equips ProteinAligner to excel in
both sequence- and structure-based predictions, offering
a more nuanced understanding of protein properties and
delivering superior performance across a range of biological
applications.

ProteinAligner’s ability to perform a wide range of
prediction tasks presents promising applications across
biology, drug discovery, and medicine. In drug discovery,
ProteinAligner’s accurate identification of bioactive pep-
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tides, such as DPP-IV inhibitors (Fig. 4c), is particularly
relevant for developing treatments for metabolic disorders
like diabetes. Its capability to predict antimicrobial peptide
properties, such as minimum inhibitory concentration
(MIC) (Extended Data Fig. 1), is critical for advancing
new antimicrobial therapies, especially in addressing the
challenge of antibiotic-resistant pathogens. This has impor-
tant implications for the global fight against antimicrobial
resistance. The model’s ability to detect type I anti-CRISPR
activities supports the design of more efficient and precise
CRISPR-based tools for both research and therapeutic
applications (Fig. 2a). Anti-CRISPR systems could be
used to enhance the safety of gene editing by mitigating
off-target effects or enabling reversible gene modifications.
In precision medicine, the prediction of pathogenic missense
variants aids in the early detection and diagnosis of genetic
disorders. By identifying harmful mutations that may lead
to diseases, ProteinAligner can contribute to personalized
treatment strategies, improving patient outcomes (Fig. 2b).
Additionally, ProteinAligner’s accurate prediction of protein
thermostability is vital for protein engineering, biopharma-
ceutical development, and industrial biotechnology, where
stable proteins are necessary for drug formulations and
biocatalysts (Fig. 2c). Overall, ProteinAligner’s diverse
prediction capabilities position it as a valuable tool that
can accelerate innovation in multiple fields, enabling faster
therapeutic discoveries, more precise gene-editing tools,
and advancements in personalized medicine and protein
engineering.

Despite the advantages of ProteinAligner, the model
has several limitations. One of the key challenges is the
dependency on high-quality structural and textual data,
which is not always available for all proteins. While
ProteinAligner can perform pretraining even when only
sequences and one additional modality (either structure or
text) are present, the absence of full multi-modal data for
many proteins can limit the model’s ability to learn com-
prehensive representations. Additionally, ProteinAligner’s
reliance on contrastive loss for modality alignment may
not fully capture subtle biological nuances in cases where
sequence, structure, and text data are not perfectly aligned.
Another limitation is the computational cost associated with
training multi-modal models, especially when dealing with
large-scale protein datasets that involve high-dimensional
structural information and large text corpora. Finally,
while ProteinAligner improves upon previous models by
integrating structure, sequence, and text, it still does not
account for other potentially informative modalities, such
as protein-protein interactions or functional annotations
from various databases, which could further enhance its
predictive capabilities.

Future work on ProteinAligner could focus on several
key directions to further enhance its performance and
applicability. One promising area is the incorporation of

additional modalities, such as protein-protein interaction
networks and post-translational modifications. These addi-
tional data sources could provide deeper insights into protein
behavior and interactions, leading to even more robust and
comprehensive protein representations. Another direction
for future work is to improve the model’s ability to handle
incomplete or noisy data by developing more sophisticated
alignment strategies that better tolerate inconsistencies
between modalities. Enhancing the interpretability of
ProteinAligner’s predictions is also a critical area for future
research, which could involve incorporating explainability
techniques to make the model’s decision-making process
more transparent, particularly in cases where sequence,
structure, and text data converge. Lastly, expanding Pro-
teinAligner’s applications beyond protein function and
property prediction - such as protein design and structure
prediction - could broaden its impact across a wide range of
biological and biomedical challenges.
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Method

Dataset preprocessing. The pretraining data for Pro-
teinAligner was sourced from the UniProtKB/Swiss-
Prot (32) and RCSB PDB (33) databases. UniProtKB/Swiss-
Prot is a well-curated repository containing high-quality
protein sequences across a wide variety of organisms,
along with detailed annotations on protein functions and
properties. We utilized version UniProt 2023_02, which
was released on May 2, 2023. The RCSB PDB database
offers a comprehensive collection of experimentally deter-
mined 3D protein structures, derived from methods such as
X-ray crystallography, nuclear magnetic resonance (NMR)
spectroscopy, and cryo-electron microscopy (cryo-EM). It
includes protein structures from a wide range of proteins,
such as enzymes, receptors, and antibodies, originating from
diverse organisms.

From these databases, we collected sequence-text pairs
and sequence-structure pairs (Extended Data Fig. 2). The
sequence-text pairs were sourced from UniProtKB/Swiss-
Prot. We first obtained a collection of protein entries from
Swiss-Prot that included textual descriptions of their func-
tions, by filtering for entries where the commentType field
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Extended Data Fig. 2 | An illustration of constructing sequence-text and sequence-structure pairs from the UniProtKB/Swiss-Prot and RCSB PDB databases.
Sequence-text pairs were generated by linking each protein’s amino acid sequence with its functional description, both available on the same UniProtKB/Swiss-Prot
webpage. Sequence-structure pairs were created by matching the protein sequences from UniProtKB/Swiss-Prot with their corresponding structures in RCSB PDB, using
PDB IDs.

was set to ‘Function’. We then retrieved the corresponding
sequence for each protein in this collection. Specifically, we
accessed the UniProt ID from the primaryAccession
field and used it to retrieve the corresponding protein FASTA
file from the UniProt website, which contains the protein’s
sequence. We downloaded all available PDB files from
the May 2, 2023 dataset release (33), comprising 200,734
experimentally determined protein structures. We then em-
ployed the UniProt ID mapping tool1 to link the structures in
the PDB files to their corresponding amino acid sequences
in the FASTA files. To address memory constraints during
pretraining, we excluded protein sequences longer than 300
residues, yielding 133,726 sequence-structure pairs and
290,480 sequence-text pairs.

Encoders in ProteinAligner. ProteinAligner utilizes
ESM (16) to learn representations for protein sequences.
ESM, a protein language model, was pretrained on 65
million protein sequences from UniRef50 (52) by predicting
masked amino acids. The model features 33 transformer
layers and an embedding dimension of 1280, allowing it
to effectively capture the complexities inherent in protein
sequences. To encode protein structures, ProteinAligner
employs ESM-IF1 (9), a model trained to address the inverse
folding problem - predicting the amino acid sequence from
a protein’s backbone atom coordinates. ESM-IF1 comprises
an encoder and a decoder, where the encoder extracts a
representation vector from the input structure, which is then
fed into the decoder to generate the corresponding sequence.
ProteinAligner utilizes only the encoder from ESM-IF1,
omitting the decoder component. The encoder is composed
of four Geometric Vector Perceptron Graph Neural Network

1https://www.uniprot.org/id-mapping

(GVP-GNN) (30) layers for geometric feature extraction,
followed by eight transformer encoder layers to capture
long-range interactions between these features. ESM-IF1
was trained on 12 million AlphaFold2 (8) computed protein
structures and 16,000 experimentally verified structures,
along with their associated sequences from the UniRef50
dataset (52). The text encoder is a transformer model
comprising eight layers and a total of 78 million parameters.

ProteinAligner pretraining. Given a protein sequence S
and a protein structure R, we employ the sequence encoder
Es(·) and structure encoder Er(·) to extract representation
vectors s = Es(S) and r = Er(R) for S and R, respectively.
To ensure that the representations are similar when S and R
belong to the same protein, and dissimilar when they do not,
we minimize the InfoNCE (31) contrastive learning loss:

Ls,r = − log
exp

(
s⊤

i ri/τ
)

exp
(
s⊤

i ri/τ
)

+
∑

j ̸=i exp
(
s⊤

i rj/τ
) , (1)

where si and ri represent the sequence and structure
representations of the same protein i, while si and rj

represent the representations of different proteins i and
j. This loss function encourages the alignment of si and
ri and discourages the similarity between si and rj . The
temperature parameter τ controls the sharpness of the
softmax distribution.

Similarly, given a protein sequence S and a protein
text description T , we use the sequence encoder Es(·)
and the text encoder Et(·) to obtain representation vectors
s = Es(S) and t = Et(T ) for S and T , respectively. To
ensure that the representations are similar when S and T
correspond to the same protein, and dissimilar when they
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do not, we minimize the following InfoNCE contrastive
learning loss:

Ls,t = − log
exp

(
s⊤

i ti/τ
)

exp
(
s⊤

i ti/τ
)

+
∑

j ̸=i exp
(
s⊤

i tj/τ
) . (2)

During pretraining, we minimized the sum of the two loss
functions with equal weights. The temperature parameter
τ was configured to 0.07. Pretraining was carried out over
20 epochs with total batch size of 80 using 40 A100 GPUs.
We optimized the model weights using the AdamW opti-
mizer (53), with an initial learning rate of 5 × 10−6, weight
decay of 1 × 10−4, and betas of (0.9,0.95). The learning
rate was dynamically adjusted throughout pretraining via the
CosineAnnealingLR scheduler (54).

Type I anti-CRISPR activity detection. The overall
model architecture for this task is illustrated in Extended
Data Fig. 3a. The sequence encoder pretrained by Pro-
teinAligner was fine-tuned using data specific to this task.
The classification module was based on a CNN which was
composed of two 1D convolutional layers, each with a stride
of 1 and a kernel size of 7. The first convolutional layer
takes an input of 1280 channels and outputs 4 channels.
The second convolutional layer maintains the same input
and output dimensions. Batch normalization (55) and ReLU
activation (56) are applied after each convolutional layer.
Following the convolutional layers, two fully connected
layers, each with a hidden size of 4, are employed for final
classification.

During training, we optimized model weights using
the Adam (57) optimizer with an initial learning rate of
3 × 10−3, over a maximum of 250 epochs with a batch size
of 32. To prevent overfitting, we employed early stopping
when the decrease in training loss fell below 0.005 and
applied weight decay, starting at 0.01 and gradually reducing
to 0.001. We also performed a hyperparameter sweep on
the dropout rate (58), exploring values between 0.3 and
0.5. Additionally, we implemented a learning rate reduction
strategy, decreasing the rate by a factor of 0.9 if valida-
tion performance did not improve for 10 consecutive epochs.

The metrics used to evaluate model performance in
this task include accuracy, precision, recall rate, and F1
score. These metrics are calculated based on the number
of true positives (TP), false positives (FP), false negatives
(FN), and true negatives (TN), and are defined as follows:

Accuracy = TP +TN

TP +TN +FP +FN
,

Precision = TP

TP +FP
,

Recall = TP

TP +FN
, (3)

F1 score = 2× Precision×Recall

Precision+Recall
.

Pathogenic missense variants prediction. The overall
model architecture is depicted in Extended Data Fig. 3b. For
this task, the sequence encoder pretrained by ProteinAligner
was fine-tuned. The classification module was based on a
multi-layer perceptron, which comprises a fully connected
layer with a hidden state size of 1280, a dropout layer with a
probability of 0.5, a leaky ReLU activation (59), and a sec-
ond fully connected layer with a softmax activation function.
We employed the Adam optimizer with a learning rate of
1×10−4 and a weight decay of 1×10−3, training the model
for a maximum of 200 epochs with a batch size of 32. To
mitigate overfitting, we applied an early stopping strategy:
if validation performance did not improve over 10 consecu-
tive epochs, training was halted, and the model checkpoint
with the best validation performance was retained as the fi-
nal model. The model’s performance was evaluated using
accuracy, precision, recall, and F1 score, as defined in Equa-
tion 3.

Thermostability prediction. The overall model architec-
ture is depicted in Extended Data Fig. 3c. The structure
encoder, pretrained using ProteinAligner, was fine-tuned for
this task. The classification module, implemented as a multi-
layer perceptron (MLP), includes a fully connected layer
with a hidden dimension of 128, followed by layer normal-
ization (60), a ReLU activation, and a second fully connected
layer to produce the classification logits. For model opti-
mization, we employed the AdamW (53) optimizer with a
learning rate of 2 × 10−2, a batch size of 4, and a weight
decay of 5×10−2. A one-cycle learning rate scheduler (61)
was applied, and the model was trained for 8 epochs. Per-
formance was evaluated based on accuracy, precision, recall,
and F1 score, as defined in Equation 3.

Identification of potent bioactive peptides. The overall
model architecture is illustrated in Extended Data Fig. 3d.
The sequence encoder, pretrained by ProteinAligner, was
fine-tuned for each of the eight tasks. The classification
module employs a convolutional neural network (CNN)
with six layers, structured as follows: a 1D convolutional
layer (kernel size = 3, stride = 1, padding = 2), followed
by BatchNorm and ReLU activation; a max pooling layer
(kernel size = 2, padding = 1) and a dropout layer with a
probability of 0.15; another 1D convolutional layer (kernel
size = 3, stride = 1, padding = 2), followed by BatchNorm
and ReLU activation; a max pooling layer (kernel size
= 2, padding = 1) and a dropout layer with a probability
of 0.15; a fully connected layer with a hidden state size
of 64, followed by ReLU activation and a dropout layer
(probability = 0.15); and finally, a fully connected binary
classification layer with sigmoid activation.

In the blood–brain barrier peptide (BBP) prediction
task, the objective is to classify whether a peptide can
penetrate the blood–brain barrier (i.e., BBP) (40). We
employed the BBPpred dataset (40), consisting of 100
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Extended Data Fig. 3 | Model architectures used in downstream tasks. a, Model architecture used in type I anti-CRISPR activity detection. b, Model architecture used
in pathogenic missense variants prediction. c, Model architecture used in thermostability prediction. d, Model architecture used for identifying potent bioactive peptides. e,
Model architecture used for predicting minimum inhibitory concentration values.

BBPs and 100 non-BBPs for training, and 19 BBPs and
19 non-BBPs for testing. In the umami peptide prediction
task, the goal is to determine whether a peptide elicits an
umami taste (41). For this task, we used the iUmami-SCM
dataset (62), with a training set of 112 umami peptides
and 241 non-umami peptides, and a test set of 28 umami
peptides and 61 non-umami peptides. In the antioxidant
peptide prediction task, the aim is to classify peptides
based on their antioxidant properties (42). We used the
AnOxPePred dataset (63), containing 582 antioxidative
peptides and 241 non-antioxidative peptides for training,
with a test set comprising 28 antioxidative peptides and
61 non-antioxidative peptides. For the antiviral peptide
prediction task, the objective is to predict whether a pep-
tide has antiviral activity (preventative and therapeutic
against viral infections) (43). We utilized the ABPDiscover
dataset (64), which includes 2321 antiviral peptides and
2321 non-antiviral peptides for training, and 623 antiviral
peptides and 623 non-antiviral peptides for testing. In the
antiparasitic peptide prediction task, the goal is to identify
peptides with antiparasitic activity (44). Using the PredAPP

dataset (65), we trained on 255 antiparasitic peptides and
255 non-antiparasitic peptides, and tested on 46 antiparasitic
peptides and 46 non-antiparasitic peptides. The tumor
T cell antigen prediction task aims to classify peptides
capable of inducing a T-cell immune response (45). We used
the iTTCA-Hybrid dataset (45), including 470 antigenic
peptides and 318 non-antigenic peptides for training, with
122 antigenic peptides and 75 non-antigenic peptides for
testing. For the dipeptidyl peptidase IV (DPP-IV) inhibitory
peptide prediction task, the goal is to identify peptides that
inhibit DPP-IV activity (66). We used the iDPPIV-SCM
dataset (66), containing 532 inhibitory peptides and 532
non-inhibitory peptides for training, and 133 inhibitory
peptides and 133 non-inhibitory peptides for testing. Lastly,
in the neuropeptide (NP) prediction task, the aim is to clas-
sify peptides as neuropeptides or non-neuropeptides (47).
We used the PredNeuroP dataset (47), containing 1940
neuropeptides and 1940 non-neuropeptides for training, and
485 neuropeptides and 485 non-neuropeptides for testing.

During training, we optimized the model using stochastic
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gradient descent (SGD) with a learning rate of 1 × 10−2,
momentum of 0.5, and no weight decay, over 200 epochs.
Additionally, we applied step decay for learning rate
adjustment and utilized early stopping based on validation
accuracy, halting training if no improvement was observed
for 40 consecutive epochs. Model performance was assessed
using several metrics, including accuracy (ACC), balanced
accuracy (BACC) (48), sensitivity (SN), specificity (SP),
Matthews correlation coefficient (MCC) (49), and area
under the ROC curve (AUC). These metrics were derived
from the counts of true positives (TP), false positives (FP),
false negatives (FN), and true negatives (TN), and are
defined by the following equations:

ACC = TP +TN

TP +TN +FP +FN
,

SN = TP

TP +FN
,

SP = TN

TN +FP
, (4)

BACC = 0.5× SN +0.5× SP,

MCC = (TP ×TN)− (FN ×FP )√
(TP +FN)(TN +FP )(TP +FP )(TN +FN)

.

Minimum inhibitory concentration (MIC) value pre-
diction. The model architecture is illustrated in Extended
Data Fig. 3e. The sequence encoder, pretrained with Pro-
teinAligner, was fine-tuned to address this task. The classifi-
cation module is a multi-layer perceptron (MLP) consisting
of two fully connected layers, with a hidden size of 256 and
a ReLU activation function. We employed the Adam opti-
mizer with an initial learning rate of 1 × 10−4, training the
model for 200 epochs. Throughout the training process, the
learning rate was dynamically adjusted at each epoch using
the LambdaLR (67) scheduler. To assess the model’s perfor-
mance, we used mean squared error (MSE) as the evaluation
metric, defined as:

MSE = 1
n

n∑
i=1

(ŷi −yi)2, (5)

where n denotes the number of examples, ŷi represents the
model’s prediction for the i-th example, and yi is the corre-
sponding ground-truth value.

Data availability
The FASTA and PDB datasets are publicly avail-
able in UniProtKB Swiss-Prot and RCSB PDB, re-
spectively. The FASTA and PDB entries for pro-
tein sequences and structures in the pretraining data,
along with their textual descriptions, are available
at https://drive.google.com/file/d/
1Ff28ajdyUDQl9JtSNQcUz-6Nbz7FXdEA/view?
usp=sharing All the data used in downstream tasks is
also publicly available. The data used in type I anti-CRISPR

activity detection is available at AcrTransAct. The data for
predicting the pathogenicity of missense variants is available
at VariPred. The data used in thermostability prediction is
available at HotProtein. The data used in peptide bioactivity
prediction is available at UniDL4BioPep. The data for
predicting the minimum inhibitory concentration (MIC) of
antimicrobial peptides is available at DeepAMP.

Code availability
The source code for ProteinAligner pretraining,
along with the pretrained checkpoints, is available at
https://github.com/Alexiland/ProteinAligner Additionally,
links to the code for downstream tasks can be found in the
README file.
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