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PERK signaling promotes mitochondrial elongation
by remodeling membrane phosphatidic acid
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Aparajita Madhavan1, Jeffery W Kelly2,3, Danielle A Grotjahn4 & R Luke Wiseman1,*

Abstract

Endoplasmic reticulum (ER) stress and mitochondrial dysfunction
are linked in the onset and pathogenesis of numerous diseases.
This has led to considerable interest in defining the mechanisms
responsible for regulating mitochondria during ER stress. The PERK
signaling arm of the unfolded protein response (UPR) has emerged
as a prominent ER stress-responsive signaling pathway that regu-
lates diverse aspects of mitochondrial biology. Here, we show that
PERK activity promotes adaptive remodeling of mitochondrial
membrane phosphatidic acid (PA) to induce protective mitochon-
drial elongation during acute ER stress. We find that PERK activity
is required for ER stress-dependent increases in both cellular PA
and YME1L-dependent degradation of the intramitochondrial PA
transporter PRELID1. These two processes lead to the accumula-
tion of PA on the outer mitochondrial membrane where it can
induce mitochondrial elongation by inhibiting mitochondrial fis-
sion. Our results establish a new role for PERK in the adaptive
remodeling of mitochondrial phospholipids and demonstrate that
PERK-dependent PA regulation adapts organellar shape in response
to ER stress.
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Introduction

Endoplasmic reticulum (ER) and mitochondrial function are coordi-

nated through the interorganellar transport of metabolites such as

lipids and Ca2+ (Rowland & Voeltz, 2012; Csordas et al, 2018; Wu

et al, 2018). As a consequence of this coordination, ER stress can be

transmitted to mitochondria and promote mitochondrial dysfunction

implicated in the pathophysiology of numerous diseases including

diabetes, cardiovascular disorders, and many neurodegenerative

diseases (Area-Gomez et al, 2012; Brown & Naidoo, 2012; De

Strooper & Scorrano, 2012; Schon & Area-Gomez, 2013; Stutzbach

et al, 2013; Liu & Dudley Jr., 2015; Smith & Mallucci, 2016;

Rodriguez-Arribas et al, 2017; Xiang et al, 2017; Morris et al, 2018;

Hughes & Mallucci, 2019; Rocha et al, 2020; Ren et al, 2021). This

pathologic relationship between ER stress and mitochondria has led

to significant interest in identifying the stress-responsive signaling

pathways responsible for regulating mitochondria in response to ER

insults.

The PERK arm of the unfolded protein response (UPR) has

emerged as a prominent stress-responsive signaling pathway

involved in regulating mitochondria during ER stress (Rainbolt

et al, 2014; Quintana-Cabrera & Soriano, 2019; Cannon & Neder-

gaard, 2021; Almeida et al, 2022). PERK is an ER transmembrane

protein that is activated in response to ER stress through a mecha-

nism involving oligomerization and autophosphorylation of its cyto-

solic kinase domain (Fig 1A; Walter & Ron, 2011; Gardner

et al, 2013; Hetz & Papa, 2018). Activated PERK selectively phos-

phorylates serine 51 of the a subunit of eukaryotic initiation factor 2

(eIF2a). Phosphorylated eIF2a prevents formation of ribosomal initi-

ation leading to global mRNA translational attenuation, which func-

tions to reduce the load of newly synthesized proteins during ER

stress (Walter & Ron, 2011; Gardner et al, 2013; Hetz & Papa, 2018).

PERK-dependent eIF2a phosphorylation also leads to the selective

translation and activation of transcription factors, such as ATF4,

through upstream open reading frames (uORFs) in the 5’ untrans-

lated region of these mRNAs (Wek & Cavener, 2007; Walter &

Ron, 2011; Gardner et al, 2013; Hetz & Papa, 2018). ATF4 regulates

the expression of several stress-responsive genes including redox

factors, amino acid biosynthesis genes, the eIF2a phosphatase

PPP1R15A/GADD34, and the pro-apoptotic transcription factor

DDIT3/CHOP (Harding et al, 2000; Wek & Cavener, 2007; Han

et al, 2013). Through this combination of translational attenuation

and transcriptional signaling, PERK promotes both adaptive and

pro-apoptotic signaling in response to varying levels and extents of

ER stress (Haucke, 1999; Harding et al, 2000; Wek & Cavener, 2007;

Lin et al, 2009; Walter & Ron, 2011; Gardner et al, 2013; Han
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et al, 2013; Sovolyova et al, 2014; Iurlaro & Munoz-Pinedo, 2016;

Halliday et al, 2017a; Hetz & Papa, 2018; Hetz et al, 2020).

PERK localizes to ER-mitochondrial contact sites, positioning this

protein to coordinate regulation of these two organelles in response

to cellular insults (Verfaillie et al, 2012). Consistent with this, PERK

signaling regulates diverse aspects of mitochondrial proteostasis and

function (Almeida et al, 2022). PERK regulates mitochondrial pro-

tein import, biogenesis, and cristae remodeling in brown adipocytes

in response to cold exposure or beta-adrenergic stimulation (Kato

et al, 2020; Latorre-Muro et al, 2021). Furthermore, the PERK-

regulated transcription factor ATF4 increases mitochondrial respira-

tory chain activity during ER stress or nutrient deprivation through

a mechanism involving SCAF1-dependent increases in supercom-

plex formation (Balsa et al, 2019). ATF4 also regulates the expres-

sion of numerous mitochondrial proteostasis factors including the

mitochondrial HSP70 HSPA9 and the AAA+ quality control protease

LONP1 to increase mitochondrial proteostasis capacity during ER

stress (Hori et al, 2002; Han et al, 2013). Furthermore, PERK-

dependent translational attenuation regulates mitochondrial protein

import by selectively decreasing protein concentrations of the core

TIM23 subunit TIM17A, a process dependent on the mitochondrial

AAA+ protease YME1L (Rainbolt et al, 2013).

PERK signaling also promotes adaptive mitochondrial elongation

downstream of eIF2a phosphorylation-dependent translational

attenuation (Lebeau et al, 2018). This increase in mitochondrial

elongation functions to protect mitochondria during ER stress by

preventing premature fragmentation and regulating mitochondrial

respiratory chain activity (Lebeau et al, 2018). However, the mecha-

nistic basis of PERK-dependent mitochondrial elongation was previ-

ously undefined. Here, we show that PERK induces mitochondrial

elongation through the remodeling of mitochondrial membrane

phosphatidic acid (PA). Our results suggest a model whereby PERK
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Figure 1. ER stress-induced mitochondrial elongation is impaired in cells expressing a hypomorphic PERK variant.

A Illustration showing the mechanism of PERK-regulated transcriptional and translational signaling. Specific genetic and pharmacologic manipulations used to disrupt
PERK signaling are shown. Adapted from Lebeau et al (2018).

B Representative images of Perk+/+ MEFs, Perk�/� MEFs, or Perk�/� MEFs transfected with wild-type PERKWT or the PSP-associated PERK allele (PERKPSP) treated for 6 h
with thapsigargin (Tg; 500 nM). The inset shows twofold magnification of the image centered on the asterisk. Scale bars, 5 lm.

C Quantification of fragmented (red), tubular (yellow), or elongated (green) mitochondria from the images shown in (B). Error bars show SEM for n = 5 independent
experiments. **P < 0.01, ***P < 0.005 for two-way ANOVA (red indicates comparison between fragmented mitochondria fractions; green indicates comparisons
between elongated mitochondria fractions).
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signaling both increases total mitochondrial PA and inhibits traffick-

ing of PA to the inner mitochondrial membrane. This leads to the

accumulation of PA on the outer mitochondrial membrane where it

induces mitochondrial elongation by inhibiting mitochondrial fis-

sion. These results define a new role for PERK in regulating the

amount and localization of mitochondrial membrane phospholipids

and show that this remodeling is important for adapting mitochon-

drial morphology during acute ER stress.

Results

A hypomorphic PERK variant inhibits ER stress-induced
mitochondrial elongation

Pharmacologic inhibition of PERK signaling, but not other arms of

the UPR, blocks mitochondrial elongation induced by ER stress

(Lebeau et al, 2018). Here, we further probed the dependence of ER

stress induced mitochondrial elongation on PERK activity in Perk�/�

MEFs. We transfected Perk+/+ or Perk�/� MEFs with mitochondrial

targeted GFP (mtGFP) and monitored mitochondrial morphology in

cells treated with or without the ER stressor thapsigargin (Tg; a

SERCA inhibitor). We then scored cells based on the presence of

fragmented, tubular, or elongated mitochondria (see Fig EV1A and

B for representative examples). Perk�/� MEFs showed increases in

fragmented mitochondria in the absence of treatment (Figs 1B and

C, and EV1C). This corresponds with reductions in the mitochon-

drial membrane potential in Perk-deficient cells, as measured by

tetramethylrhodamine ethyl ester (TMRE) staining (Fig EV1D). This

suggests that the increase of fragmentation in these cells can be

attributed to mitochondrial depolarization. Tg-induced mitochon-

drial elongation was also impaired in Perk-deficient cells (Figs 1B

and C, and EV1C). However, treatment with cycloheximide (CHX),

which induces mitochondrial elongation independent of PERK sig-

naling (Tondera et al, 2009; Lebeau et al, 2018), reduced the popula-

tion of fragmented mitochondria in Perk�/� MEFs (Fig EV1E). This

indicates that these cells are not deficient in their ability to induce

elongation in response to reduced translation. Reconstitution of

Perk�/� MEFs with wild-type PERK restored basal mitochondrial

morphology and rescued Tg-induced mitochondrial elongation

(Figs 1B and C, and EV1C). In contrast, reconstitution of

Perk-deficient cells with a hypomorphic PERK haplotype implicated

in progressive supranuclear palsy (PSP; PERKPSP; Hoglinger

et al, 2011; Yuan et al, 2018) did not impact basally fragmented

mitochondria or rescue Tg-induced mitochondrial elongation. How-

ever, CHX increased mitochondrial length in Perk-deficient cells

expressing PERKPSP (Fig EV1E). We confirmed similar expression of

PERKWT and PERKPSP in Perk�/� MEFs by immunoblotting

(Fig EV1F). These results implicate PERK signaling in ER stress

induced mitochondrial elongation and demonstrate that genetic dis-

ruptions in PERK activity impair the regulation of mitochondrial

morphology in response to ER stress.

Overexpression of cytosolic PA lipases inhibits ER stress induced
mitochondrial elongation

Mitochondrial morphology is defined by the relative activities of

GTPases localized to the inner and outer mitochondrial membranes

that regulate organellar fission and fusion. These include the pro-

fission GTPase DRP1 of the outer mitochondrial membrane (OMM)

and the pro-fusion GTPases MFN1 and MFN2 of the OMM and

OPA1 of the inner mitochondrial membrane (IMM; Mishra &

Chan, 2016; Chan, 2020; Fenton et al, 2020; Giacomello et al, 2020;

Sabouny & Shutt, 2020). Stress-induced changes in mitochondrial

shape can be dictated through posttranslational regulation of these

GTPases to alter the relative activities of fusion and fission path-

ways (Mishra & Chan, 2016; Chan, 2020; Fenton et al, 2020; Giaco-

mello et al, 2020; Sabouny & Shutt, 2020). Previous results indicate

that PERK signaling does not influence the posttranslational regula-

tion of these GTPases (Lebeau et al, 2018), suggesting that ER

stress-induced mitochondrial elongation proceeds through an alter-

native mechanism.

Mitochondrial elongation can be induced by the accumulation of

saturated PA on the OMM through mechanisms including PA-

dependent inhibition of the pro-fission GTPase DRP1 (Baba

et al, 2014; Ha & Frohman, 2014; Adachi et al, 2016; Kameoka

et al, 2018; Acoba et al, 2020). PERK was previously shown to

increase cellular PA during ER stress through a mechanism depen-

dent on PERK kinase activity but independent of signaling down-

stream of eIF2a phosphorylation (Bobrovnikova-Marjon

et al, 2012). We found that treatment with Tg increases PA in

mitochondria-enriched fractions and whole-cell extracts from both

MEF or HeLa cells using mass spectrometry, biochemical assays,

and ELISA (Figs 2A–C and EV2A–F). Phosphatidylcholine (PC) was

not affected in enriched mitochondria (Fig 2A). Co-treatment with

the PERK inhibitor GSK2656157, a compound that directly inhibits

PERK kinase activity (Fig 1A; Axten et al, 2013), reduced Tg-

dependent increases of PA in both MEF and HeLa cells (Figs 2B and

EV2A–D). This indicates that ER stress-dependent increases in PA

require PERK kinase activity, as previously reported (Bobrovnikova-

Marjon et al, 2012). However, co-treatment of MEFs with Tg and

ISRIB, a compound that blocks PERK signaling downstream of eIF2a
phosphorylation (Fig 1A; Sidrauski et al, 2013), did not appear to

mitigate ER stress induced PA increases in either mitochondria

enriched fractions or whole-cell extracts (Figs 2B, and EV2B and E).

This is consistent with previous results suggesting that ER stress

increases PA through a mechanism selectively dependent on PERK

kinase activity, but not signaling downstream of eIF2a phosphoryla-

tion (Bobrovnikova-Marjon et al, 2012).

We next determined the dependence of PERK-regulated mito-

chondrial elongation on PA by monitoring mitochondrial morphol-

ogy in Tg-treated HeLa cells co-overexpressing mtGFP and Lipin1—a

cytosolic PA lipase that catalyzes the conversion of PA to diacylgly-

cerol (DAG; Baba et al, 2014; Tatsuta & Langer, 2017; Kameoka

et al, 2018; Tamura et al, 2020). We showed that Lipin1 overexpres-

sion reduced cellular PA and prevented Tg-dependent increases of

PA (Figs 2C, and EV2F and G). Overexpression of wild-type Lipin1

increased basal mitochondrial fragmentation and inhibited Tg-

induced mitochondrial elongation (Figs 2D and E, and EV2H). Simi-

lar results were observed in cells treated with CHX. Lipin1 overex-

pression did not significantly impact the expression of ATF4 target

genes (e.g., Asns and Chop) or increases of ATF4 protein in Tg-

treated cells (Fig EV2I and J). Furthermore, overexpression of a cat-

alytically inactive Lipin1 did not influence basal mitochondrial mor-

phology or mitochondrial elongation induced by Tg or CHX

(Fig EV2K). Overexpression of PA-PLA1—a cytosolic lipase that
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converts PA to lysophosphatidic acid (LPA; Baba et al, 2014)—simi-

larly inhibited mitochondrial elongation in cells treated with Tg or

CHX without impacting other aspects of PERK signaling (Fig EV2L–O).

The sensitivity of Tg- and CHX-induced mitochondrial elongation to

PA-PLA1 also suggests that this process is not mediated through

increased LPA—a phospholipid that promotes mitochondrial elonga-

tion during starvation through a MTCH2-dependent mechanism

(Labbe et al, 2021). Collectively, our results show that depletion of PA

afforded by overexpression of two distinct PA lipases blocks ER stress-

induced mitochondrial elongation, implicating PA in this process.

ER stress prevents DRP1-dependent mitochondrial fragmentation

Mitochondrial elongation can be induced in response to stress

through mechanisms involving posttranslational regulation of the

pro-fission GTPase DRP1. DRP1 phosphorylation at residue S637

promotes mitochondrial elongation by inhibiting DRP1 GTPase

activity, while the pro-fission phosphorylation of DRP1 at S616

increases DRP1 localization to mitochondria and subsequent activity

(Chang & Blackstone, 2007; Taguchi et al, 2007; Kar et al, 2017).

Pharmacologic mTOR inhibition can induce mitochondrial elonga-

tion through a mechanism involving both increased DRP1 phosphor-

ylation at S637 and reduced phosphorylation at S616 (Morita

et al, 2017). However, as reported previously (Lebeau et al, 2018),

Tg did not influence DRP1 phosphorylation at either S637 or S616

(Fig EV3A) or alter the amount of DRP1 enriched in mitochondrial

fractions from MEFmtGFP cells (Fig EV3B). PERK-dependent increases

in PA can activate mTOR during ER stress (Bobrovnikova-Marjon

et al, 2012). Consistent with this, we observe Tg-dependent

increases in mTOR-dependent S6K phosphorylation in MEFmtGFP

cells (Fig EV3C). However, despite increasing PA and promoting

mitochondrial elongation, Tg did not increase S6K phosphorylation

in HeLa cells (Fig EV3D). These results suggest that PERK-dependent

alterations in mTOR activity are unlikely to be primary contributors

to ER stress induced mitochondrial elongation across cell types.

Accumulation of PA on the OMM can also promote mitochon-

drial elongation by inhibiting DRP1 activity (Adachi et al, 2016).

This was previously demonstrated by showing that genetically
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Figure 2. Overexpression of PA lipases inhibits ER stress-induced mitochondrial elongation.

A Relative amounts of phosphatidic acid (PA) and phosphatidylcholine (PC), measured by untargeted mass spectrometry, in mitochondrial fractions isolated from MEF
cells treated for 6 h with vehicle or thapsigargin (Tg; 500 nM). Error bars show SEM for n = 5 biological replicates. ***P < 0.005 for one-way ANOVA.

B Relative amounts of PA, measured by untargeted mass spectrometry, in whole cell lysates prepared from MEF cells treated for 3 h with vehicle, Tg (500 nM),
GSK2656157 (10 lM), or ISRIB (I; 2 lM), as indicated. Error bars show SEM for n = 3 biological replicates. **P < 0.01 for one-way ANOVA.

C Relative amounts of PA, measured by untargeted mass spectrometry, in whole cell lysates prepared from HeLa cells transfected with mock or wild-type HA-Lipin
(LipinWT) and treated for 3 h with vehicle or Tg (500 nM). Error bars show SEM for n = 6 biological replicates. *P < 0.05, ***P < 0.005 for unpaired t-test.

D Representative images of HeLa cells expressing mtGFP transfected with mock or Lipin1WT and treated for 3 h with vehicle, Tg (500 nM) or cycloheximide (CHX; 50 lg/
ml). The inset shows twofold magnification of the image centered on the asterisk. Scale bars, 5 lm.

E Quantification of fragmented (red), tubular (yellow), or elongated (green) mitochondria from the images shown in (D). Error bars show SEM for n = 7 independent
experiments. P-value reflects comparisons of elongated (green) or fragmented (red) mitochondria populations for the indicated conditions. ***P < 0.005 for two-way
ANOVA (red indicates comparison between fragmented mitochondria fractions; green indicates comparisons between elongated mitochondria fractions).
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increasing PA on the OMM by overexpressing mitoPLD—an OMM

lipase that converts cardiolipin to PA—basally increased mitochon-

drial elongation and inhibited DRP1-dependent mitochondrial frag-

mentation induced by the uncoupler carbonyl cyanide m-

chlorophenylhydrazone (CCCP; Li et al, 2015; Adachi et al, 2016).

Consistent with this, we observed that mitoPLD overexpression in

HeLa cells increased basal mitochondrial elongation and inhibited

CCCP-induced mitochondrial fragmentation (Fig 3A and B). We

found that mitoPLD overexpression increased cellular PA to levels

similar to that observed in Tg-treated cells and did not significantly

influence PERK signaling (Fig EV3E and F). Pretreatment with Tg

also reduced CCCP-induced mitochondrial fragmentation. However,

Tg pretreatment inhibited CCCP-induced proteolytic cleavage of the

inner membrane GTPase OPA1 (Fig 3C)—a biological process

upstream of DRP1 in mitochondrial fragmentation induced by mem-

brane uncoupling (Mishra & Chan, 2016; Jones et al, 2017;

Chan, 2020; Fenton et al, 2020; Giacomello et al, 2020; Sabouny &

Shutt, 2020). This appears to result from Tg-dependent increases in

mitochondrial membrane polarity (Fig EV3G), preventing efficient

uncoupling in CCCP-treated cells and precluding our ability to deter-

mine whether Tg pretreatment directly impairs DRP1 activity under

these conditions.

To circumvent this problem, we monitored mitochondria mor-

phology in MEFmtGFP cells pretreated with Tg and then challenged

with ionomycin—a Ca2+ ionophore that increases cytosolic Ca2+

(Ji et al, 2015; Mishra & Chan, 2016; Chan, 2020; Fenton

et al, 2020; Giacomello et al, 2020; Sabouny & Shutt, 2020).

Increases in cytosolic Ca2+ induced by short (< 30 min) treatment

with ionomycin promotes DRP1-dependent mitochondrial frag-

mentation through a mechanism independent of membrane

uncoupling or OPA1 processing (Ji et al, 2015). Pretreatment for

3 h with Tg—a time point sufficient to increase PA and induce

mitochondrial elongation—inhibits ionomycin-induced mitochon-

drial fragmentation (Fig 3D and E). This inhibition is reversed by

co-treatment with ISRIB, a small molecule that blocks eIF2a
phosphorylation-dependent signaling downstream of PERK

(Fig 1A). This indicates that this inhibition of ionomycin-induced

fragmentation can be attributed to PERK signaling and not dysre-

gulation of intracellular Ca2+ induced by the combined treatment

of Tg and ionomycin. These results are consistent with a model

whereby ER stress promotes mitochondrial elongation through a

mechanism involving PA-dependent inhibition of DRP1-mediated

fission, as reported previously for mitoPLD overexpression

(Adachi et al, 2016).
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Figure 3. ER stress-induced mitochondrial elongation inhibits ionomycin-induced mitochondrial fragmentation.

A Representative images of HeLa cells expressing mtGFP transfected with mock or mitoPLDGFP pretreated for 3 h with vehicle or thapsigargin (Tg; 500 nM) and then
challenged with CCCP (20 lM) for 30 min. Note the expression of mitoPLDGFP did not impair our ability to accurately monitor mitochondrial morphology in these
cells.

B Quantification of fragmented (red), tubular (yellow), or elongated (green) mitochondria from the images shown in (A). Error bars show SEM for n = 3 independent
experiments. *P < 0.05, **P < 0.01, ***P < 0.005 for two-way ANOVA (red indicates comparison between fragmented mitochondria fractions; green indicates compari-
sons between elongated mitochondria fractions).

C Immunoblot of lysates prepared from MEFmtGFP cells pre-treated for 3 h with vehicle or Tg (500 nM) and then challenged with CCCP (20 lM) for 30 min.
D Representative images of MEFmtGFP cells pre-treated for 3 h with vehicle, thapsigargin (Tg; 500 nM), or Tg and ISRIB (I; 0.2 lM) then challenged with vehicle or iono-

mycin (Iono; 1 lM) for 30 min. The inset shows two-fold magnification of the image centered on the asterisk. Scale bars, 5 lm.
E Quantification of fragmented (red), tubular (yellow), or elongated (green) mitochondria from the images shown in (D). Error bars show SEM for n = 3 independent

experiments. **P < 0.01, ***P < 0.005 for two-way ANOVA (red indicates comparison between fragmented mitochondria fractions; green indicates comparisons
between elongated mitochondria fractions).

Source data are available online for this figure.
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PERK signaling leads to reductions in the intramitochondrial PA
transporter PRELID1 during ER stress

ER stress induced mitochondrial elongation is inhibited by shRNA-

depletion of YME1L in HeLa cells (Lebeau et al, 2018). We further

confirmed the dependence of Tg-induced mitochondrial elongation

on YME1L in MEFmtGFP cells where Yme1l was deleted by CRISPR

(Fig EV4A and B). PRELID1, an intermembrane space protein that

transports PA from the OMM to the IMM (Fig 4A; Tatsuta &

Langer, 2017; Tamura et al, 2020), is a known substrate of YME1L

(Potting et al, 2010; Tamura et al, 2012; MacVicar et al, 2019). Inter-

estingly, PRELID1 is a short-lived protein whose levels are highly

sensitive to translational attenuation (Li et al, 2021). Consistent with

this, PRELID1 levels are reduced in MEFmtGFP cells treated with CHX

for 3 h (Fig 4B). This CHX-dependent reduction in PRELID1 was

blocked in Yme1l-deficient cells (Fig 4B), confirming that PRELID1

is degraded by YME1L under these conditions. Identical results were

observed for TIM17A, another short-lived mitochondrial protein

degraded by YME1L downstream of translation inhibition (Fig 4B;

Rainbolt et al, 2013).

The sensitivity of PRELID1 to reductions in protein translation

suggests that this protein could be decreased in response to PERK-

dependent translational attenuation. As expected, PRELID1 was rap-

idly decreased in MEFmtGFP cells treated with the ER stressor Tg

(Fig EV4C). Tg-dependent reductions in PRELID1 were inhibited in

cells deficient in Yme1l, indicating that YME1L was required for this

process (Fig 4C). Co-treatment with either the PERK kinase inhibitor

GSK2656157 or the PERK signaling inhibitor ISRIB (Fig 1A) blocked

Tg-dependent reductions in PRELID1 (Fig 4D). Similar results were

observed for TIM17A. Tg-dependent reductions in PRELID1 and

TIM17A were also inhibited in Perk�/� MEFs (Fig 4E). Reconstitu-

tion of Perk�/� cells with PERKWT, but not hypomorphic PERKPSP,

restored Tg-induced degradation of these proteins. Importantly,

CHX reduced PRELID1 and TIM17A in all genotypes, confirming

that these proteins remain sensitive to translational attenuation even

when PERK signaling is impaired (Fig 4E). Tg-dependent reductions

in PRELID1 were not inhibited in cells deficient in Atf4 (Fig EV4D;

Harding et al, 2003), a primary upstream transcription factor in the

PERK pathway (Fig 1A). This indicates that this phenotype is inde-

pendent of PERK-regulated transcriptional signaling. Collectively,

TIM17A

YME1L

PRELID1

TIM23

Veh Tg
Tg

+ISRIB
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+GSK

MEFmtGFP

TIM17A

YME1L

PRELID1

Veh Tg CHX Veh Tg CHX

HSP60

MEFmtGFP

Veh CHX Veh CHX
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TIM17A

YME1L

PRELID1

TIM23
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PRELID

Veh Tg CHX
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A

Figure 4. ER stress reduces PRELID1 through a YME1L-dependent mechanism downstream of PERK-dependent translational attenuation.

A Illustration showing the PRELID1-dependent trafficking of PA from the outer to inner mitochondrial membranes (OMM and IMM, respectively).
B Immunoblot of lysates prepared from MEFmtGFP cells and Yme1l-deficient MEFmtGFP cells treated for 3 h with vehicle or cycloheximide (CHX; 50 lg/ml).
C Immunoblot of lysates prepared from MEFmtGFP cells and Yme1l-deficient MEFmtGFP cells treated for 3 h with vehicle, thapsigargin (Tg; 500 nM) or cycloheximide

(CHX; 50 lg/ml).
D Immunoblot of lysates prepared from MEFmtGFP cells treated for 3 h with vehicle, Tg (500 nM), Tg and ISRIB (0.2 lM), or Tg and GSK2656157 (GSK; 1 lM).
E Immunoblot of lysates prepared from Perk+/+ MEFs, Perk�/� MEFs, or Perk�/� MEFs transfected with wild-type PERKWT or the PSP-associated PERK allele (PERKPSP)

treated for 6 h with thapsigargin (Tg; 500 nM) or cycloheximide (CHX; 50 lg/ml).

Source data are available online for this figure.
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these results suggest that PRELID1, like TIM17A (Rainbolt

et al, 2013), is reduced during ER stress through a YME1L-

dependent mechanism downstream of PERK-dependent transla-

tional attenuation.

PERK-dependent PRELID1 degradation remodels mitochondrial
membranes during ER stress

PRELID1 traffics PA from the outer to inner mitochondrial mem-

brane, where it serves as a precursor to the formation of cardiolipin

(Potting et al, 2010; Tamura et al, 2012; Tatsuta & Langer, 2017).

Thus, reductions in PRELID1 should decrease cardiolipin. To test

this, we shRNA-depleted Prelid1 from MEFmGFP cells and monitored

cardiolipin in isolated mitochondria in the presence or absence of

ER stress. We confirmed efficient PRELID1 knockdown by immuno-

blotting (Fig EV5A). Importantly, Prelid1 depletion did not alter Tg-

induced reductions of TIM17A or increases of ATF4. Furthermore,

Tg-dependent increases in PA were observed in Prelid1-depleted

MEFmtGFP cells (Fig EV5B). These results indicate that loss of

PRELID1 does not impair PERK signaling in these cells. Prelid1

depletion reduced cardiolipin in mitochondria isolated from

MEFmtGFP cells (Fig EV5C). Treatment of MEFmtGFP cells expressing

nonsilencing shRNA with Tg for 3 h also reduced cardiolipin to

levels similar to those observed in Prelid1-deficient cells. However,

Tg did not further reduce cardiolipin in Prelid-depleted cells. These

results are consistent with a model whereby ER stress-dependent

reductions in PRELID1 limit PA trafficking across the inner mito-

chondrial membrane and contribute to reductions in cardiolipin dur-

ing acute ER stress.

In combination with ER stress-dependent increases in PA

(Figs 2A–C and EV2A–F), reductions in PRELID1-mediated PA traf-

ficking across mitochondrial membranes should lead to the accumu-

lation of PA on the OMM where it could promote mitochondrial

elongation by inhibiting mitochondrial fission (Adachi et al, 2016).

To test this, we monitored mitochondrial morphology in Prelid1-

depleted MEFmtGFP cells in the presence and absence of Tg. Interest-

ingly, Prelid1 depletion did not basally influence mitochondrial mor-

phology or inhibit Tg-induced mitochondrial elongation (Figs 5A

and B, and EV5D). This indicates that reduction of PRELID1, on its

own, is not sufficient to increase mitochondrial elongation, likely

reflecting the importance of PERK kinase-dependent increases in PA

in this process (Bobrovnikova-Marjon et al, 2012). Consistent

with this model, co-treatment with the PERK kinase inhibitor

GSK2656157 blocked Tg-induced mitochondrial elongation in

Prelid1-deficient cells (Figs 5A and B, and EV5D). However, we

found that Prelid1 depletion partially rescued the Tg-induced mito-

chondrial elongation in cells co-treated with ISRIB—a compound

that blocks PERK-dependent PRELID1 degradation (Fig 4D), but

not PERK kinase-dependent increases in PA (Figs 2B, and EV2B

and E). Co-treatment with ISRIB completely blocked Tg-induced
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Figure 5. Reductions in PRELID1 contribute to ER stress-induced mitochondrial elongation.

A Representative images of MEFmtGFP cells expressing non-silencing (NS) or Prelid1 shRNA treated for 3 h with thapsigargin (Tg; 500 nM) and either GSK2656157 (GSK;
1 lM) or ISRIB (I; 0.2 lM), as indicated. The inset shows 2-fold magnification of the image centered on the asterisk. Scale bars, 5 lm.

B Quantification of fragmented (red), tubular (yellow), or elongated (green) mitochondria from the images shown in (A). Error bars show SEM for n = 5 independent
experiments. ***P < 0.005 for two-way ANOVA (green indicates comparisons between elongated mitochondria fractions).

C Representative images of HeLa cells expressing mtGFP and non-silencing (NS) or PRELID1 shRNA treated for 3 h with thapsigargin (Tg; 500 nM) and either GSK2656157
(GSK; 1 lM) or ISRIB (I; 0.2 lM), as indicated. The inset shows twofold magnification of the image centered on the asterisk. Scale bars, 5 lm.

D Quantification of fragmented (red), tubular (yellow), or elongated (green) mitochondria from the images shown in (C). Error bars show SEM for n = 3 independent
experiments. P-value reflects comparisons of elongated (green) mitochondria populations for the indicated conditions. **P < 0.01; ***P < 0.005 for two-way ANOVA
(green indicates comparisons between elongated mitochondria fractions).
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mitochondrial elongation in MEFmtGFP cells expressing non-silencing

shRNA (Figs 5A and B, and EV5D). Identical results were observed

in HeLa cells depleted of PRELID1 and treated with Tg,

GSK2656157, and/or ISRIB (Figs 5C and D, and EV5E and F). These

results indicate PERK-dependent reductions in PRELID1 contribute

to the mitochondrial elongation observed during ER stress.

Discussion

Mitochondrial elongation is an adaptive mechanism that protects

mitochondria in response to diverse pathologic insults (Rambold

et al, 2011; Gomes et al, 2011a, 2011b; Lee et al, 2012, 2014; Lebeau

et al, 2018; Labbe et al, 2021; Oshima et al, 2021). Numerous mech-

anisms have been shown to promote mitochondrial elongation in

response to different types of stress. For example, the accumulation

of lysophosphatidic acid (LPA) on the outer mitochondrial mem-

brane increases mitochondrial elongation through a MTCH2-

dependent mechanism during starvation (Labbe et al, 2021). Alter-

natively, HDAC6-dependent deacetylation of pro-fusion GTPase

MFN1 increases mitochondrial length during glucose deprivation

by enhancing the activity of organellar fusion pathways (Lee

et al, 2014). Furthermore, PKA-dependent phosphorylation or

PARKIN-dependent ubiquitination of the pro-fission GTPase DRP1

inhibits mitochondrial fission and promotes mitochondrial elonga-

tion under a variety of different conditions (Chang & Black-

stone, 2007; Cribbs & Strack, 2007; Oshima et al, 2021). Despite

these differences in mechanism, mitochondrial elongation similarly

functions to prevent premature fragmentation, regulate mitochon-

dria respiratory chain activity, and promote cell survival in response

to diverse pathologic insults, including ER stress (Chang & Black-

stone, 2007; Cribbs & Strack, 2007; Rambold et al, 2011; Gomes

et al, 2011a, 2011b; Lee et al, 2012, 2014; Lebeau et al, 2018; Labbe

et al, 2021; Oshima et al, 2021).

ER stress promotes mitochondrial elongation through a

process regulated by the PERK arm of the UPR (Lebeau et al, 2018).

Here, our results suggest a model whereby PERK signaling

promotes mitochondrial elongation through a mechanism involving

PERK-dependent remodeling of mitochondrial membrane PA

(Fig 6). Previously, ER stress was shown to increase cellular PA

through a mechanism dependent on PERK kinase activity, but not

eIF2a phosphorylation (Bobrovnikova-Marjon et al, 2012). This was

suggested to involve direct, PERK-dependent phosphorylation of

diacylglycerol (DAG; Fig 6; Bobrovnikova-Marjon et al, 2012); how-

ever, other mechanisms could also contribute to the PERK kinase

activity-dependent increase in PA. Our results support the preferen-

tial dependence of ER stress induced increases of PA on PERK

kinase activity, showing that the PERK kinase inhibitor GSK2656157

reduces Tg-dependent increases of PA, while ISRIB, a compound

that inhibits PERK signaling downstream of eIF2a phosphorylation

(Fig 1A), does not significantly impact Tg-dependent increases

of PA.

Our findings that ISRIB blocks Tg induced mitochondrial elonga-

tion suggest that PERK-dependent mitochondrial elongation

involves other mechanisms regulated downstream of eIF2a phos-

phorylation. To account for this, we demonstrate that ER stress-

dependent increases in mitochondrial elongation also involves

reductions in the intramitochondrial PA trafficking protein PRELID1

(Fig 6). We show that PRELID1 is a short-lived mitochondrial pro-

tein that is degraded through a YME1L-dependent mechanism

downstream of eIF2a phosphorylation-dependent translation attenu-

ation. We implicated PERK-dependent reductions of PRELID1 in ER

stress induced mitochondrial elongation by showing that genetic

depletion of PRELID1 partially rescues ER stress induced mitochon-

drial elongation in cells co-treated with the PERK signaling inhibitor

ISRIB, but not the PERK kinase inhibitor GSK2656157. This high-

lights an important role for PERK-dependent reductions of PRELID1

in the adaptive remodeling of mitochondrial membrane PA observed

during ER stress.

The combination of PERK-dependent increases in total PA and

YME1L-dependent decreases of PRELID1 should increase PA on the

OMM during conditions of ER stress. Previous studies have shown

that increases in OMM PA promote mitochondrial elongation

through multiple mechanisms including direct inhibition of the pro-

fission GTPase DRP1 (Fig 6; Adachi et al, 2016). Consistent with an

important role for OMM PA in ER stress-induced mitochondrial

P
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Figure 6. Proposed mechanism for PERK-dependent regulation of mitochondrial PA during ER stress.

In response to ER stress, PERK is activated, leading to an increase in total and mitochondrial PA (left) – a process that was previously suggested to result from PERK
kinase-dependent phosphorylation of diacylglycerol (DAG; Bobrovnikova-Marjon et al, 2012). YME1L degrades the intramitochondrial PA transporter PRELID1 downstream
of PERK-dependent translational attenuation, limiting the trafficking of PA to the inner mitochondrial membrane (IMM). This both decreases the population of PA in the
IMM available for conversion to cardiolipin (CL) and promotes PA accumulation on the outer mitochondrial membrane (OMM) where it can promote mitochondrial elon-
gation by inhibiting mitochondrial fission through mechanisms such as direct inhibition of DRP1 (Adachi et al, 2016).
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elongation, overexpression of two different cytosolic PA lipases,

Lipin1 and PA-PLA1, block mitochondrial elongation observed in

Tg-treated cells. Furthermore, we demonstrate that pretreatment

with the ER stressor Tg inhibits DRP1-dependent mitochondrial frag-

mentation in ionomycin-treated cells. Collectively, these results sup-

port a model whereby PERK-dependent increases in OMM PA

promote mitochondrial elongation through a mechanism involving

reductions in mitochondrial fission, potentially mediated through

mechanisms such as the direct inhibition of the pro-fission GTPase

DRP1 (Fig 6).

PERK-regulated translational and transcriptional signaling regu-

late diverse aspects of mitochondrial proteostasis and function.

Our results provide insights into PERK-dependent remodeling of

mitochondria by demonstrating that signaling through this UPR

pathway promotes adaptive remodeling of mitochondrial mem-

brane PA to induce protective organelle elongation during ER

stress. As we and others continue studying the impact of PERK sig-

naling on mitochondrial biology, additional mitochondrial path-

ways regulated through PERK signaling will also likely be

identified, further expanding our understanding of the critical role

for this stress-responsive signaling pathway in regulating mito-

chondria. Moving forward, it will also be interesting to define how

different PERK-dependent mitochondrial adaptations integrate to

influence other aspects of mitochondrial function during conditions

of stress. For example, recent cryo-electron tomography results

indicate that mitochondrial elongation correlates with cristae remo-

deling in ER stressed cells, suggesting that these changes to bulk

mitochondrial morphology and ultrastructure may be coordinated

(Barad et al, 2023).

The global importance of PERK in adapting mitochondria during

ER stress also suggests that disruptions in this signaling could exac-

erbate mitochondrial dysfunction in disease. Genetic mutations in

EIF2AK3, the gene that encodes PERK, are causatively associated

with Wolcott–Rallison syndrome—a devastating disease character-

ized by early onset diabetes, skeletal deformities, and growth

impairments (Delepine et al, 2000). Furthermore, a hypomorphic

PERK haplotype is associated with tauopathies including progressive

supranuclear palsy (PSP; Hoglinger et al, 2011; Stutzbach

et al, 2013; Yuan et al, 2018). Interestingly, mitochondrial dysfunc-

tion has been implicated in all these disorders, suggesting that fail-

ure of PERK-dependent mitochondrial regulation could be a

contributing factor in disease pathogenesis. Consistent with this, we

show that hypomorphic PSP-associated PERK alleles disrupt adap-

tive PERK-dependent mitochondrial elongation and YME1L-

dependent PRELID1 degradation. In contrast, chronic PERK activa-

tion is also implicated in the pathogenesis of numerous neurodegen-

erative diseases involving mitochondrial dysfunction such as AD

and prion disease (Moreno et al, 2012; Halliday et al, 2015, 2017b;

Radford et al, 2015; Bell et al, 2016). While the specific importance

of PERK signaling on mitochondrial function in these diseases

remains largely undefined, this suggests that PERK signaling, while

adaptive during acute ER insults, could become detrimental to mito-

chondria in response to chronic ER insults. Further investigations

will be required to determine the specific impact of altered PERK sig-

naling on mitochondria regulation in the context of these diseases to

define both the pathologic and potentially therapeutic implications

of PERK activity on the mitochondrial dysfunction implicated in

these disorders.

Materials and Methods

Cell culture, transfections, lentiviral transduction, and CRISPR
deletion

MEFmtGFP (a kind gift from Peter Schultz, TSRI; Wang et al, 2012),

Perk+/+ and Perk�/� MEFs (Harding et al, 2000), Atf4+/+ and Atf4�/�

MEFs (Harding et al, 2003; kind gifts from David Ron, Cambridge),

HeLa cells (purchased from the ATCC), or HEK293T cells were cul-

tured in DMEM (Corning-Cellgro) supplemented with 10% fetal

bovine serum (FBS; Omega Scientific), 2 mM L-glutamine (GIBCO),

100 U/ml penicillin, and 100 mg/ml streptomycin (GIBCO). Cells

were maintained at 37°C and 5% CO2. Nonessential amino acids

(GIBCO) and 2-mercaptoethanol (ThermoFisher) were added to cul-

ture media of Atf4+/+ and Atf4�/� MEFs and Perk+/+ and Perk+/+

MEFs. HeLa cells were transfected by calcium phosphate precipita-

tion, as previously described (Lebeau et al, 2018). MEF cells were

transfected with MEF Avalanche Transfection Reagent (EZ Biosys-

tems) according to the manufacturer’s protocol. Lentivirus were pre-

pared by transfecting HEK293T cells with pRSV-rev (Addgene

#12253), pMDL-RRE (Addgene, #12251), pMD2.6 (Addgene #12259),

and the indicated shRNA in the pLKO.1 vector (Sigma) using calcium

phosphate precipitation. After 24 h, the transfection media was

removed and replaced with complete DMEM and incubated over-

night for viral production. Virus containing media was removed the

following day and filtered with a 0.45-lm syringe filter (Genessee

Scientific). Polybrene (ThermoFisher) was added to the virus

containing media at a concentration of 10 lg/ml and the media was

then added to HeLa or MEFmtGFP cells. Stable pools of cells expres-

sing nonsilencing or gene-specific knockdowns were then generated

through selection with puromycin (3 mg/ml for MEF cells and

1 mg/ml for HeLa). Knockdown was confirmed by immunoblotting.

Yme1l was deleted from MEFmtGFP cells using CRISPR/Cas9. Briefly,

cells were transfected with pSpCas9(BB)-2A-Puro (PX459; Addgene,

#62988) containing sgRNA against Yme1l (GATCCAATATGAGATG-

TATGCCAAC AAACGTTGGCATACATCTCATATT) using MEF Ava-

lanche, following manufacturers protocols. After transfection, cells

were selected with puromycin and single clones were screened for

YME1L depletion by qPCR and immunoblotting.

Plasmids, shRNAs, and compounds

HA-LIPIN1WT, HA-LIPINMut, and mitoPLD-GFP overexpression con-

structs were kind gifts from Hiromi Sesaki (Johns Hopkins) and

described previously (Adachi et al, 2016). The PA-PLA1-GFP overex-

pression construct was purchased from Addgene (#162880). PerkWT

and PerkPSP overexpression plasmids were kind gifts from Jonathan

Lin (Stanford; Yuan et al, 2018). Plasmids containing shRNA were

purchased from Sigma in the pLKO.1 vector: mouse Prelid1 shRNA

(TRCN0000345802), human PRELID1 shRNA (TRCN0000130829).

All compounds used in this study were purchased: thapsigargin (Tg;

Fisher Scientific), GSK2656157 (BioVision Inc.), ISRIB (Sigma),

CCCP (Sigma), rapamycin (Selleckchem), and ionomycin (Sigma).

Fluorescence microscopy

HeLa cells transfected with mtGFP or MEFmtGFP cells were seeded at

a density of 100,000 cells/well on glass-bottom dishes (MatTek)
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coated with poly-D-lysine (Sigma) or rat tail collagen 1 (GIBCO).

Cells were then treated as indicated and images were recorded with

an Olympus IX71 microscope with 60× oil objective (Olympus), a

Hamamatsu C8484 camera (Hamamatsu Photonics), and HCI image

software (Hamamatsu Photonics). Quantification was performed by

blinding the images and then scoring cells based on the presence of

primarily fragmented, tubular, or elongated mitochondria, as before

(Lebeau et al, 2018). At least three different researchers scored each

set of images and these scores were averaged for each individual

experiment and all quantifications shown were performed for at

least three independent experiments quantifying a total of > 60

cells/condition across all experiments. The data were then prepared

in PRISM (GraphPad, San Diego, CA) and plotted on a stacked bar

plot to show the average morphology and standard error of the

mean across all experiments. Statistical comparisons were

performed using a two-way ANOVA in PRISM, comparing the rela-

tive amounts of fragmented, tubular, or elongated mitochondria

across different conditions.

Phospholipid quantification

For untargeted MS analysis of PA, whole-cell pellets were resus-

pended in 500 ll of a cold hypotonic buffer consisting of 1 mM PBS,

pH 7.4. The material was then homogenized on ice using a glass

Dounce homogenizer (30 strokes). The homogenized sample was

centrifuged at 500 × g for 4 min then the supernatant was trans-

ferred to a 1.5-ml microfuge tube and lyophilized overnight. The

lyophilized material was weighed and normalized by total mass

prior to performing a modified Bligh and Dyer extraction (Bligh &

Dyer, 1959). The proceeding steps were carried out with glass

pipettes and tubes to avoid plastic contamination. PA was extracted

by the addition of 100 ll/mg of cold methanol containing an inter-

nal PA standard (Splash Lipidomix 330707, Avanti) at a dilution of

(1:50), followed by 50 ll/mg of cold chloroform (CHCl3) with occa-

sional vortex mixing. Milli-Q H20 containing 5 mM erythorbate was

added at a volume of 50 ll/mg. The sample was agitated and centri-

fuged in glass test tubes at 200 × g for 10 min. The bottom phase

was collected in a clean test tube, while the upper phase was re-

extracted two additional times with CH₃OH:CHCl3 (1:1, v/v)

containing HCl at final concentration of 10 mM. The organic phases

were combined and dried under vacuum to afford a lipid film that

was stored at �80°C until MS analysis. Mitochondria-enriched frac-

tions were processed similar to whole-cell samples except they were

normalized via protein concentration as determined by the PierceTM

BCA Protein Assay kit (Thermo Scientific). In Brief, PA was

extracted from the mitochondria enriched fractions using 10 ll/lg
methanol, 5 ll/lg CHCl3 and 5 ll/lg milli-Q H20 containing 5 mM

erythorbate as previously described above.

Extracted lipid samples and external standards (SPLASH Lipi-

domix 330707, 18:0 CL 710334p, Avanti) were removed from the

�80°C freezer after drying and stored under nitrogen were resus-

pended in 100 ll of methanol. Negative mode LC–MS analysis was

performed on an Agilent 6230 ESI-TOF-MS System calibrated with a

reference solution at m/z 1,033.9881. A XBridge BEH C8 XP Column

(Waters, 2.5 lm, 4.6 mm × 150 mm) was used at a flow rate of

500 ll/min, employing the following gradient: 30 to 100% solvent B

over 30 min, 100% isocratic B for 10 min followed by a return to

30% B for 5 min. Solvents A consisted of MilliQ water and

methanol (9:1, v:v). Solvents B consisted of acetonitrile: 2-propanol

(5:3, v:v), and both contained 10 mM Piperidine, 10 mM ammo-

nium acetate (or 10 mM sodium acetate), and 0.1% formic acid.

Prior to processing, raw.d files were converted to the open format

mzXML using MSConvert software, which is part of the ProteoWi-

zard software toolkit (Chambers et al, 2012). Mass detection was

achieved using mzmine 2 wavelet algorithm, ADAP chromatogram

builder and ADAP deconvolution, which are part of the MZmine 2

software package (Pluskal et al, 2010). Initial lipid identifications

were achieved using lipidmaps database using [M � H]� for PA

with a m/z tolerance of 15 ppm, subsequently detected lipids were

filtered out for further processing. The putative PA peaks were vali-

dated by aligning to the internal and external standards followed by

graphical identification of PA lipids by plotting the Kendrick mass

defect plot employing CH2 as the repeating unit. The quantification

of all PA lipid classes was normalized based on the abundance of

the internal standard PA (15:0–18:1-d7-PA), which factors in extrac-

tion efficiency and sample handling. Total PA levels were then nor-

malized to vehicle for the indicated number of independent

experiments.

Targeted lipidomics was performed on abundant lipid species for

both PA and CL, (34:1) and (66:2, 68:2, 68:3), respectively. The rel-

ative abundance of these individual lipid species were quantified

using a 1,260 Infinity II LC System (G6125BW) in selected ion mon-

itoring (SIM) mode outfitted with an ESI source. All of the lipid spe-

cies were observed as [M – H] � ions. Subsequently, the replicates

were pooled together and injected onto a high-resolution, time-of-

flight (Q-TOF) MS/MS (Agilent model 6546) using the identical RP

platform as the targeted MS approach for the purpose of molecular

identification. For the MS/MS PA, 34:1 was observed as a [M – H]
� peak at 673.4802 with mass fragments of 281.2490, 255.2335, and

152.9963 m/z. For Cl 68:2, we observed the [M – H] � peak at

1,403.9983 with the MS/MS spectra comprising primarily of

673.4805, 417.2421, 281.2485, and 255.2324 m/z. The RP platform

used was the same as previously described above for our untar-

geted approach except the mobile phase was changed to, 0–10 min

40% solvent B isocratic, 10–40 min 40–100% solvent B as a gradi-

ent. Solvent A is MilliQ water:methanol (1:1, v/v) and solvent B is

methyl tert-butyl ether (MTBE): 2-propanol (1:4, v:v) both

containing 2 mM ammonium acetate. To generate the required sen-

sitivity for identification in the MS/MS we extracted the lipids as

described previously with these notable exceptions. The dried cell

lysate was comprised from a single 15-cm tissue culture plate

affording 5–6 mg of dried material per sample. The total cellular

lipids of this material were extracted using four sequential extrac-

tions differing in solvent compositions. The first extraction was

achieved by adding 200 ll MilliQ water, 400 ll methanol and

400 ll chloroform. The second subsequent extraction was

performed by adding an additional 200 ll methanol and 400 ll
chloroform to the remaining aqueous layer. The third extraction

uses an addition of 500 ll MTBE, this fraction does not contain

many enriched lipids, but functions to remove residual methanol/

chloroform that will prevent separation of the last butanol extrac-

tion. The last extraction uses 100 ll butanol and 400 ll MTBE both

of which are water saturated before their addition to the remaining

aqueous layer. The organic phases were combined and dried under

vacuum to afford a lipid film that was stored at �80°C until

targeted MS and MS/MS analysis.
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For quantification of PA by ELISA, MEF or HeLa cells were

treated as indicated and collected on ice and then lysed with 20 mM

Hepes (Sigma, H4034) pH 7.4, 100 mM NaCl (Sigma, S7653), 1 mM

EDTA (Sigma, E9884), 1% Triton X100 (Sigma, 9036-19-5) supple-

mented with Pierce protease inhibitor (ThermoFisher, A32963). Pro-

tein concentrations for each sample were then quantified using the

Bio-Rad Bradford assay. PA was then measured using the Human

Phosphatidic Acid Antibody IgM ELISA Kit (Lifeome Bioloabs) fol-

lowing the manufacturers protocol and monitoring fluorescence on

a Tecan F250Pro microplate reader (Tecan).

For quantification of PA by fluorometric biochemical assay, MEF

or HeLa cells were treated as indicated and collected on ice and then

centrifuged and washed with cold PBS three times. Samples were

then sonicated using the Misonix S-4000 sonicator then processed

and PA was measured according the manufacturer’s protocol for the

Total Phosphatidic Assay Kit (CellBio Labs).

Immunoblotting and antibodies

Whole cells were lysed at room temperature in HEPES lysis buffer

(20 mM Hepes pH 7.4, 100 mM NaCl, 1 mM EDTA, 1% Triton

X100) supplemented with 1× Pierce protease inhibitor (Thermo-

Fisher). Total protein concentrations of lysates were then normal-

ized using the Bio-Rad protein assay and lysates were combined

with 1× Laemmli buffer supplemented with 100 mM DTT and boiled

for 5 min. Samples (100 lg protein) were then separated using 10

or 12% SDS–PAGE gels and transferred to nitrocellulose membranes

(Bio-Rad). Membranes were then blocked with 5% milk in tris-

buffered saline (TBS) and then incubated overnight at 4°C with the

indicated primary antibody. The next day, membranes were washed

in TBS supplemented with Tween, incubated with the species appro-

priate secondary antibody conjugated to IR-Dye (LICOR Biosciences)

and then imaged using an Odyssey Infrared Imaging System (LICOR

Biosciences). Quantification was then carried out using the LICOR

Imaging Studio software.

Primary antibodies were acquired from commercial sources and

used in the indicated dilutions in antibody buffer (50 mM Tris [pH

7.5], 150 mM NaCl supplemented with 5% BSA (w/v) and 0.1%

NaN3 (w/v)): TIM17A (Thermo Scientific, PA5-21925; 1:1,000),

PRELID1 [aa27-54] (LS Bio, LC-C158729; 1:1,000), YME1L

(Proteintech, 11510-1-AP; 1:1,000), ATF4 (Cell Signaling, 11815;

1:500), Tubulin [B-5-1-2] (Sigma, T6074; 1:5,000), TIM23 (BD

Transduction Labs, 611222; 1:1,000), HSP60 [LK1] (Thermo Scien-

tific, MA1-35434; 1:1,000), PERK (Cell Signaling, 3192S; 1:1,000),

HA [Clone: 16B12] (Biolegend, 901501; 1:1,000), GFP (B2; Santa

Crux, sc9996; 1:1,000), OPA1 (BD Biosciences, 612606; 1:2,000),

Phospho-DRP1 (Ser616) (ThermoFisher, PA5-64821; 1:1,000),

Phospho-DNM1L (Ser637; ThermoFisher, PA5; 101038; 1:1,000),

DNM1L (ThermoFisher, MA5-26255; 1:1,000), p70 S6 Kinase p

(Ser389; Cell Signaling, 9206S; 1:1,000), p70 S6 Kinase (Cell Sig-

naling, 9202S; 1:1,000).

Quantitative polymerase chain reaction (qPCR)

The relative mRNA expression of target genes was measured using

quantitative RT-PCR. Cells were treated as indicated and then

washed with phosphate buffered saline (PBS; Gibco). RNA was

extracted using Quick-RNA MiniPrepKit (Zymo Research) according

to the manufacturers protocol. RNA (500 ng) was then converted to

cDNA using the QuantiTect Reverse Transcription Kit (Qiagen).

qPCRs were prepared using Power SYBR Green PCR Master Mix

(Applied Biosystems), and primers (below) were obtained from Inte-

grated DNA Technologies. Amplification reactions were run in an

ABI 7900HT Fast Real Time PCR machine with an initial melting

period of 95°C for 5 min and then 45 cycles of 10 s at 95°C, 30 s at

60°C.

Primers used in this study

Human ASNS: forward: GCAGCTGAAAGAAGCCCAAG; reverse:

AGCCTGAATGCCTTCCTCAG.

Human CHOP/DDIT3: forward: ACCAAGGGAGAACCAGGAAACG;

reverse: TCACCATTCGGTCAATCAGAGC.

Human HSPA5/BIP: forward: GCCTGTATTTCTAGACCTGCC;

reverse: TTCATCTTGCCAGCCAGTTG.

Human RIBOP: forward: CGT CGC CTC CTA CCT GCT; reverse:

CCA TTC AGC TCA CTG ATA ACC TTG.

Membrane depolarization

Cells were seeded at a density of 85,000 cells/well of a six-well

plate and treated with 500 nM Tg for 3 h prior to collection.

CCCP (10 lM) was added 50 min before collection, followed by

200 nM TMRE (Thermofisher) 20 min before collection. Samples

were collected using TrypLE Express and cell culture media. Fol-

lowing a brief centrifugation, cell pellets were washed in DPBS

(Gibco) and resuspended in DPBS supplemented with 5% BSA.

Fluorescence intensity of TMRE for 20,000 cells/condition was

recorded on the PE channel of a BD Biosciences LSR II analytical

flow cytometer. Data are presented as geometric mean of the fluo-

rescence intensity from three experiments normalized to vehicle-

treated cells.

Mitochondrial isolation

Whole cells were collected on ice from at least 3 × 10 cm plates

then pelleted. Cells were mixed with mitochondrial lysis buffer

(220 mM sorbitol; 70 mM sucrose; 50 mM MOPS pH 7.4; 5 mM

EGTA) supplemented with 1× Pierce protease inhibitor (Thermo-

Fisher) and lysed by passing through a 21 guage needle 10–20 times.

Lysed cells were spun down at 1,000 × g for 10 min to pellet the

nuclei and unlysed cells. The supernatant was transferred into a

new tube and spun down at 9,500 × g for 10 min to pellet the mito-

chondria. The supernatant was saved as a cytosolic control. For

immunoblotting, mitochondrial pellets were lysed on ice for 10 min

in mitochondrial wash buffer (220 mM sorbitol; 70 mM sucrose;

50 mM MOPS pH 7.4) supplemented with 1% Triton and protein

concentration was determined using the Bio-rad protein assay and

prepared as described above.

Statistical analysis

Statistics were calculated in PRISM 9 (GraphPad, San Diego, CA).

Data are presented as mean � SEM and were analyzed by two-way

ANOVA with Tukey’s multiple correction test, one-way ANOVA, or

the appropriate Student’s t-tests, as indicated in the accompanying
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figure legends. Indications of nonsignificant interactions from

ANOVA were generally omitted for clarity.

Data availability

This study includes no data deposited in external repositories.

Expanded View for this article is available online.
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