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Accurately predicting the mechanisms and properties of poten-
tial drug molecules is essential for advancing drug discovery.
However, traditional methods often require the development of
specialized models for each specific prediction task, resulting in
inefficiencies in both model training and integration into work-
flows. Moreover, these approaches are typically limited to pre-
dicting pharmaceutical attributes represented as discrete cat-
egories, and struggle with predicting complex attributes that
are best described in free-form texts. To address these chal-
lenges, we introduce DrugChat, a multi-modal large language
model (LLM) designed to provide comprehensive predictions
of molecule mechanisms and properties within a unified frame-
work. DrugChat analyzes the structure of an input molecule
along with users’ queries to generate comprehensive, free-form
predictions on drug indications, pharmacodynamics, and mech-
anisms of action. Moreover, DrugChat supports multi-turn di-
alogues with users, facilitating interactive and in-depth explo-
ration of the same molecule. Our extensive evaluation, includ-
ing assessments by human experts, demonstrates that DrugChat
significantly outperforms GPT-4 and other leading LLMs in
generating accurate free-form predictions, and exceeds state-of-
the-art specialized prediction models.
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Introduction
Accurate prediction of the mechanisms and properties of
potential drug molecules is crucial for advancing phar-
maceutical research and facilitating drug discovery (1).
As the development of new drugs becomes increasingly
complex, the demand for reliable computational models that
can predict these attributes has grown exponentially (2).
Deep learning models have emerged as powerful tools for
addressing this challenge, thanks to their ability in analyzing
vast amounts of data and uncovering complex patterns (3–6).

However, despite their potential, existing approaches in
this domain typically involve developing specialized models
tailored to specific prediction tasks, such as predicting
pharmacokinetics (7), toxicity (8), or molecular binding
affinities (9, 10). While these models have achieved notable
successes, their task-specific nature imposes certain limi-
tations. First of all, each model requires extensive training

on large datasets specific to the prediction task, which leads
to inefficiencies in both computational resources and time.
Additionally, integrating predictions from multiple models
often requires complex pipelines that further complicate
the drug discovery process (11, 12). Moreover, existing
approaches are limited to predicting relatively simple
attributes represented as discrete categories (13, 14), and
they lack the capability to accurately predict more complex,
nuanced aspects of drug molecules, such as indications,
pharmacodynamics, and mechanisms of action, which are
best described in free-form text.

To address these challenges, we introduce DrugChat, a
multi-modal large language model (LLM) designed for the
comprehensive prediction of drug mechanisms and prop-
erties. DrugChat integrates multiple modalities, including
molecular structures, molecular images, and texts, to provide
a holistic understanding of potential drug molecules. Users
can upload a molecule and interact with DrugChat by asking
various questions in natural language, referred to as prompts,
to gain insights about the molecule. DrugChat leverages
a graph neural network (15) and a convolutional neural
network (16) to effectively capture and interpret the structure
of this molecule. These interpretations are seamlessly
integrated into an LLM (17), which generates detailed,
contextually relevant responses in free-form text to users’
questions.

Unlike existing approaches (18–22), DrugChat handles
a wide range of prediction tasks within a single framework,
thereby eliminating the need for multiple specialized models.
This not only reduces the computational and time costs
associated with training and maintaining separate models but
also simplifies the integration of various predictions into a
cohesive workflow (23). Furthermore, DrugChat’s ability to
generate predictions in free-form text allows for a richer and
more nuanced understanding of drug molecules, particularly
for complex attributes like pharmacodynamics, indications,
and mechanisms of action that are challenging to express
in discrete categories. By integrating and contextualizing
these interrelated molecule attributes, DrugChat offers a
holistic view that enhances predictive accuracy. DrugChat’s
multi-modal capabilities further boost its predictive power
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by incorporating both structural and visual modalities of
molecules, ensuring that no critical aspect of a molecule’s
characteristics is overlooked. This comprehensive approach
enables DrugChat to provide more insightful and informed
decision-making in drug development. Additionally,
DrugChat’s interactive, multi-turn dialogue system allows
users to explore drug molecules in depth, refining their
prompts based on DrugChat’s initial responses and thereby
gaining a more detailed understanding of the molecules.
This adaptability and depth of interaction represent impor-
tant improvements over the static, single-output nature of
traditional models (24, 25).

Results

DrugChat overview
Examples of DrugChat’s usage are shown in Fig. 1a. It
accepts a compound molecule along with a user’s prompt
as input, and generates a textual prediction. For example,
when provided with a molecule and the prompt ‘what is its
mechanism of action?’, DrugChat generates a prediction
such as: ‘it stimulates neurons to release or maintain high
levels of a particular group of neurotransmitters...’.

The core components of DrugChat include molecule
encoder networks, a large language model (LLM) (26, 27),
and two adapters that seamlessly integrate these encoders
with the LLM (Fig. 1b). The input molecule is initially
represented using a SMILES (Simplified Molecular Input
Line Entry System) string. DrugChat converts the SMILES
string into two forms: a structural representation as a
molecular graph and a visual representation as a molecular
image. For the molecular graph, a graph neural network
(GNN) (25) based encoder, pretrained on two million
unlabeled molecules from the ZINC15 database (28) using
self-supervised learning (25), processes the graph by first
converting nodes and edges into distinct representation
vectors based on their types. The GNN then iteratively
updates these node and edge representations by aggregating
information from each node’s neighbors (29, 30). Finally,
a pooling operation (31) is applied to summarize the node
representations into a single representation vector of the
entire molecular graph. The molecular image is encoded
by a convolutional neural network (CNN) (16), specifically
the ImageMol model (24), which was pretrained on images
of ten million unlabelled bioactive molecules from the
PubChem dataset (32) using self-supervised learning (24).
The CNN applies multiple layers of 2D convolutional
filters, which function as matching templates, to ‘scan’ the
image, producing a feature map (33). This feature map is
then condensed into a representation vector of the entire
molecular image through a pooling operation (34). The
adapters, implemented as multi-layer perceptrons (MLPs),
are used to transform the representation vectors of the
molecule’s graph and image into a unified vector, termed
the molecule token, which is compatible with the LLM’s
latent representation space, thereby enabling the LLM to
interpret it. Concurrently, the input prompt is decomposed

into a sequence of language tokens, each represented as a
vector within the LLM’s latent space. The molecule token is
integrated into the language token sequence, which is then
fed into the LLM, specifically Vicuna-13B (35). The LLM
then generates new language tokens sequentially through
autoregressive decoding (36), ultimately producing the
prediction.

To train DrugChat, we curated a comprehensive dataset
from three databases, including ChEMBL (37), Pub-
Chem (32), and DrugBank (38). After filtering and removing
duplicates, we collected approximately 14,000 unique drug
molecules. These molecules encompass both approved and
experimental drugs, covering a wide range of compound
categories (Extended Data Fig. 2). Each drug molecule’s
attributes were meticulously annotated by experts, including
complex attributes described in free-form text, such as
indications, pharmacodynamics, and mechanisms, as well as
simpler attributes represented by discrete categories, such as
cytotoxicity and administration routes. From these annotated
drug molecules, we curated 91,365 (molecule, prompt,
answer) triplets for training DrugChat. In these triplets, the
molecule and prompt serve as inputs to DrugChat, while
the answer represents the target output of DrugChat. The
answers vary from free-form texts that describe indica-
tions, pharmacodynamics, and mechanisms, to structured
responses like a binary ‘yes/no’ to questions such as ‘can
it be taken orally?’. We divided the drug entries from
ChEMBL and DrugBank into training (80%), validation
(10%), and test (10%) sets, while the entire PubChem dataset
was used exclusively for training. We trained model weights
by minimizing the negative log-likelihood (39) between
DrugChat’s predictions and the ground truth answers in the
training sets.

DrugChat generates precise, free-form predictions
for drug indications, pharmacodynamics, and mech-
anisms of action

Drug indications refer to the diseases that a molecule is
intended to treat or its potential applications in clinical trials.
Pharmacodynamics describes the biochemical and physio-
logical effects that a molecule exerts on the body, while the
mechanism of action explains how the molecule produces
these effects. These attributes are typically described in
free-form text within the literature. We employed DrugChat
to generate free-form textual predictions for these attributes
using specific prompts: ‘what is its indication?’, ‘what
are its pharmacodynamics?’, and ‘what is its mechanism
of action?’. To evaluate DrugChat’s performance, we
randomly selected 572 test drug molecules from DrugBank,
ensuring that none were included in the training set. We
compared DrugChat’s predictions to those of GPT-4 (27),
a flagship LLM, which also uses molecules’ SMILES as
input. Additionally, each drug molecule in DrugBank is
accompanied by an expert-written overview that summarizes
essential information about the molecule. We assessed the
ability of DrugChat and GPT-4 to generate overviews for the
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Prompt:  What is its indication?

Prompt:  What are its pharmacodynamics?

Prompt:  What is its mechanism of action?

Prompt:  Is it cytotoxic to human skeletal muscle cells?

Prompt:  Is it taken orally?

Input SMILES:
CCN(CC)C(C)C(=O)
C1=CC=CC=C1

Task 4: Predict cytotoxicity

Task 5: Predict administration route

Task 1: Predict indication

Task 2: Predict pharmacodynamics

Task 3: Predict mechanism of action

Prediction:   No.

Prediction:   Yes.

Prediction:   Used in the management of exogenous obesity.

It suppresses appetite by stimulating the central 
nervous system...

It stimulates neurons to release or maintain high 
levels of a particular group of neurotransmitters...

DrugChat

a

b DrugChat

Input prompt: 
What is its 
mechanism of 
action?

O

N

CH3

CH3

CH3

Convolutional 
neural network

Molecular image

Adapter

Prediction: 

... ...

Prediction: 

CCN(CC)C(C)C(=O)C1=CC=CC=C1

Molecular graph

Graph neural network
Adapter

Output prediction: 
It is an amphetamine that 
stimulates neurons to 
release or maintain high 
levels of a particular group 
of neurotransmitters known 
as catecholamines; these 
include dopamine and 
norepinephrine. High levels 
of these catecholamines 
tend to suppress hunger 
signals and appetite.

Large 
language 

model

Text tokenization

Fig. 1 | DrugChat is a multi-modal LLM capable of predicting drug attributes in either free-form text or as discrete categories. a, DrugChat facilitates versatile
predictions of drug attributes, enabling users to submit queries through flexible natural language (known as prompts). By using task-specific prompts, DrugChat can perform
a wide range of prediction tasks within a unified framework, without requiring changes to model parameters. b, Model architecture of DrugChat. It takes the SMILES
representation of a molecule along with a prompt as inputs and generates a prediction in natural language. It comprises two molecular encoders - a graph neural network
and a convolutional neural network - that learn representation vectors for the molecular graph and image derived from the SMILES input, two adapters that transform these
representations into a format compatible with LLMs, and an LLM that generates a prediction based on the molecular representations and the prompt.

test molecules.

We conducted a human evaluation in which pharma-
ceutical science experts assessed the accuracy of the model’s
predictions by comparing them against the ground truth
annotations provided by DrugBank, without knowing which
model generated the predictions. The evaluation was based
on a scoring rubric, assigning scores of 2, 1, or 0 for each
prediction, corresponding to ‘correct’, ‘partially Correct’,
and ‘incorrect’, respectively (Methods). Fig. 3 provides
examples illustrating how these scores were assigned on
some molecules. DrugChat achieved average human as-
sessment scores of 1.05 for indication prediction, 0.94 for
pharmacodynamics, 0.8 for mechanism of action, and 0.92
for overview, significantly outperforming GPT-4, which
scored 0.38, 0.82, 0.45, and 0.46 respectively (Fig. 2a). The

superiority of DrugChat over GPT-4 is also reflected in the
distribution of scores (Fig. 2b). For instance, in the task
of indication prediction, 42.9% of DrugChat’s predictions
were rated as correct, 19% as partially correct, and 38.1% as
incorrect. In contrast, GPT-4’s predictions received ratings of
14.3% correct, 9.5% partially correct, and 76.2% incorrect.
As another example, for action mechanism prediction,
DrugChat’s predictions were rated as 25% correct, 30%
partially correct, and 45% incorrect, while GPT-4 received
ratings of 15% correct, 15% partially correct, and 70%
incorrect. In addition to assigning absolute scores, the
human evaluators also performed relative comparisons by
assessing which prediction - whether from DrugChat or
GPT-4 - was superior for each molecule (Fig. 2c). DrugChat
outperformed GPT-4 in most cases. Specifically, DrugChat
generated better predictions for 52.4% of molecules in terms
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DrugChat

GPT-4
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2 (Correct) 1 (Partially correct) 0 (Incorrect)

0% 25% 50% 75% 100%

Pharmacodynamics

0% 25% 50% 75% 100%

DrugChat

GPT-4

Mechanism of action
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Overview
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Overview

Mechanism
of action

Pharmaco-
dynamics

Indication

GPT-4 won Tie DrugChat won

Fig. 2 | DrugChat accurately predicts drug indications, pharmacodynamics, and mechanisms of action expressed in textual descriptions and significantly out-
performs GPT-4, a flagship LLM. a-c, Human expert evaluations demonstrated DrugChat’s significantly superior performance over GPT-4, as shown by the average expert
scores (a), the distribution of scores (b), and human evaluator preferences between DrugChat and GPT-4 predictions (c). Experts rated the predictions on a scale from 0 to
2, with 2 indicating fully correct predictions, 1 for partially correct, and 0 for incorrect. Both DrugChat and GPT-4 used SMILES representations of molecules as input. d, In
automated evaluations - measured by semantic similarity, BLEU, and METEOR metrics - DrugChat substantially outperformed GPT-4.

of indication, 41.2% in pharmacodynamics, 50% in mecha-
nism of action, and 47.2% in overview. In contrast, GPT-4
outperformed DrugChat in only 14.3%, 35.3%, 30%, and
25% of the cases, respectively. The remaining comparisons

resulted in ties.

Fig. 3 presents a comparison of predictions made by
DrugChat and GPT-4 for several drug molecules randomly
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COC(=O)CC[C@@H]1N=C(C2=CC=CC=N2)C2=CC(Br)=CC=
C2N2C(C)=CN=C12

Ultra short-acting benzodiazepine used in the induction and 
maintenance of sedation during short (<30 minute) 
procedures.

It corresponds to Bromazepam, which is a benzodiazepine 
derivative. Bromazepam is primarily used for its anxiolytic 
properties, effectively treating anxiety disorders. It works by 
enhancing the effect of the neurotransmitter GABA in the 
brain, leading to sedative, hypnotic (sleep-inducing), and 
relaxing muscle effects.

It is a benzodiazepine with a long duration of action. It is 
used as an anxiolytic and hypnotic agent. It is also used as a 
premedication for sedation in surgery.

For the induction and maintenance of procedural sedation in 
adults undergoing procedures lasting 30 minutes or less.

Vaborbactam is used in combination with meropenem for the 
treatment of complicated urinary tract infections, including 
pyelonephritis.

For the treatment of insomnia.

It modulates the effects of GABA(A) receptors in order to 
enhance the effects of GABA.

It represents the compound Vemurafenib, a BRAF enzyme 
inhibitor, specifically targeting the BRAF V600E mutation…

It is a benzodiazepine receptor agonist with a high affinity for 
the GABA receptor. It enhances the inhibitory effects of 
GABA on the central nervous system, producing sedation, 
relaxation, and muscle relaxation.

Overview

Indication

Pharmacodynamics

[H][C@]12SCC(CSC3=NN=NN3CC(O)=O)=C(N1C(=O)[C@H]2N
C(=O)CC1=CC=CC=C1CN)C(O)=O

It is administered parenterally and has a longer elimination 
half-life than any currently available cephalosporin. Its 
activity is very similar to that of cefamandole, another 
second-generation cephalosporin antibiotic, except that the 
drug is less active against most gram-positive organisms. 

It corresponds to Valdecoxib, a nonsteroidal anti-
inflammatory drug (NSAID) used primarily to treat pain and 
inflammation...

It is a cephalosporin antibiotic. It is usually administered 
intravenously.

Overview

For the treatment of infections caused by susceptible 
organisms.

Antibacterial therapy (specifically for tuberculosis).

Treatment of bacterial infections, including urinary tract 
infections, skin and skin structure infections, and respiratory 
tract infections.

Indication

It is a semisynthetic second-generation cephalosporin. The 
cephalosporins are bactericidal drugs with both gram-
positive and gram-negative activity. They inhibit bacterial cell 
wall synthesis in a way similar to the penicillins.

It corresponds to the drug Thiamine or Vitamin B1. Thiamine 
plays a crucial role in carbohydrate metabolism...

The bactericidal activity of the drug results from its inhibitory 
effect on bacterial cell wall synthesis. The antibacterial 
activity of the drug may be enhanced when administered in 
combination with other antibiotics.

Pharmacodynamics

Correct Partially correct Incorrect

Mechanism of action

The bactericidal activity results from the inhibition of cell wall 
synthesis via affinity for penicillin-binding proteins (PBPs).

It is an antithyroid medication used primarily to treat 
hyperthyroidism by inhibiting the enzyme thyroperoxidase...

It inhibits bacterial cell wall synthesis.

Ground-truth GPT-4 DrugChat

It potentiates the effect of gamma-aminobutyric acid (GABA) 
on GABA(A) receptors, the main inhibitory neurotransmitter 
receptors in the mammalian brain.

The mechanism of action of Melitracen involves inhibiting the 
reuptake of neurotransmitters such as serotonin and 
norepinephrine in the brain…

It enhances the inhibitory effects of GABA on the central 
nervous system, producing sedative, hypnotic, anxiolytic, and 
muscle relaxant effects.

Mechanism of action

Fig. 3 | Examples of predictions generated by DrugChat and GPT-4 demonstrate that DrugChat’s predictions are more accurate than GPT-4’s. Text highlighted in
red indicates incorrect predictions, while text highlighted in green indicates correct predictions.

selected from the test set, which were not seen by the models
during training. The predictions generated by DrugChat
were notably more accurate compared to those by GPT-4,
as validated by human expert ratings. For example, when
provided with the SMILES of the molecule shown on the
left in Fig. 3, DrugChat accurately predicted the molecule’s
overview, indication, pharmacodynamics, and mechanism
of action. The predictions aligned closely with the ground
truth. DrugChat correctly classified the molecule as a

cephalosporin antibiotic, identified its administration route
as intravenous, and recognized its role in treating bacterial
infections across multiple organs. Furthermore, it accurately
predicted the mechanism of action, noting that the molecule
inhibits bacterial cell wall synthesis. In contrast, GPT-4
produced largely incorrect predictions, misidentifying the
molecule as a nonsteroidal anti-inflammatory drug (NSAID)
for pain and inflammation, and incorrectly attributing its
mechanism of action to COX-2 inhibition. As another exam-
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ple, when given the SMILES representation of the molecule
shown on the right in Fig. 3, DrugChat accurately identified
the molecule as a benzodiazepine and recognized its use
for sedation during surgery. Regarding pharmacodynamics,
DrugChat correctly indicated that the molecule enhances the
inhibitory effects of GABA in the central nervous system,
leading to sedation and muscle relaxation. Interestingly,
when asked about the indication, DrugChat suggested the
molecule’s use for treating insomnia, likely because benzodi-
azepines are sometimes used for that condition. In contrast,
GPT-4 misclassified the molecule as either bromazepam
or vaborbactam, providing largely incorrect information on
both the indication and pharmacodynamics. Additionally,
DrugChat delivered consistent predictions across various
queries about the same molecule, whereas GPT-4 produced
conflicting predictions, especially regarding the drug’s
indication and pharmacodynamics. A mistake by DrugChat
was its prediction that the molecule has a long duration of
action, while it actually has a short duration.

Besides human evaluation, we also employed automated
evaluation metrics, including semantic similarity, BLEU
scores (40), and METEOR scores (41). Semantic similarity
(ranging from -1 to 1, with higher values indicating better
alignment) assesses the semantic alignment between the
predicted text and the ground truth by leveraging language
model embeddings (Methods). BLEU and METEOR scores
quantify the overlap of words between the predicted and
ground truth texts (Methods). Both BLEU and METEOR
scores range from 0 to 1, with higher values indicating better
performance. DrugChat demonstrated a large performance
improvement over GPT-4 (Fig. 2d), achieving an average
score of 0.47 in semantic similarity (compared to GPT-4’s
0.32), 0.3 in BLEU (compared to GPT-4’s 0.17), and 0.23
in METEOR (compared to GPT-4’s 0.14). These averages
were calculated across predictions for drug indication,
pharmacodynamics, mechanism of action, and overview.

DrugChat’s superior performance over GPT-4 is rooted
in its molecule-aware architecture, explicitly designed for
the complex domain of compound molecules. While GPT-4
excels as a general-domain textual language model, it has
major limitations when applied to molecular understanding.
These limitations arise from its processing approach, which
interprets molecules’ SMILES representations merely as
sequences of characters, devoid of chemical and spatial
context. This hinders its ability to grasp the intricate
structural relationships within molecules, which are crucial
for accurate predictions of drug indications, pharmacody-
namics, and mechanisms of action. In contrast, DrugChat is
meticulously designed with dedicated molecular encoders,
including a graph neural network (GNN) and a convolutional
neural network (CNN), pretrained on large-scale molecule
datasets. The GNN excels at modeling the connectivity
and interactions within molecules, capturing the relational
information vital for understanding molecular behavior.
Meanwhile, the CNN adeptly recognizes patterns within

molecular structures, similar to how it identifies objects from
images. By leveraging these specialized encoders, DrugChat
effectively discerns subtle yet significant molecular features
that often elude more general models like GPT-4. This
dual-encoder approach, combining the strengths of GNN and
CNN, enables DrugChat to deliver superior predictions.

DrugChat accurately predicts drug properties repre-
sented as discrete categories

Beyond generating detailed free-form predictions, DrugChat
is also capable of predicting drug properties represented as
discrete categories. Specifically, we focused on predicting
molecules’ cytotoxicity to human cells, administration routes
(e.g., oral, parenteral, topical), and their potential to function
as prodrugs. To assess DrugChat’s cytotoxicity prediction
performance, we used a test set of 190 compounds from
the dataset curated by Wong et al. (21). For evaluating its
predictions on administration routes and prodrug status,
we randomly selected 385 molecules from the ChEMBL
test set. None of these molecules were included in the
training data. We compared DrugChat against several
state-of-the-art (SOTA) LLMs, including GPT-4 (27),
LLaMa (17), ChatGLM (42), and FastChat-T5 (43), all
of which, like DrugChat, used the SMILES of molecules
as input. Additionally, we benchmarked its performance
against ImageMol (24), a SOTA specialized model designed
for categorical molecular property prediction (Methods).
Performance was assessed using macro-averaged F1 score
(higher is better), which accounts for the imbalance in
category labels (Extended Data Fig. 3).

Accurately predicting the cytotoxicity of molecules to
human cells presents a significant challenge, as it requires
a deep understanding of molecular properties and their
interactions within cellular environments. We performed
cytotoxicity predictions on three types of human cells:
human liver carcinoma cells (HepG2), primary skeletal
muscle cells (HSkMC), and human lung fibroblast cells
(IMR-90). HepG2 cells are commonly used for studying
hepatotoxicity and general cytotoxicity, while HSkMCs and
IMR-90 cells offer potential advantages over immortalized
cell lines like HepG2 for studying in vivo toxicity (21). For
predicting cytotoxicity to HepG2, we used a prompt: ‘Is the
molecule cytotoxic to human liver carcinoma cells (HepG2)?
Please answer Yes or No.’ Similar prompts were used for
the other classification tasks. DrugChat achieved F1 scores
ranging from 0.57 to 0.71, significantly outperforming LLM
baselines, which ranged between 0.17 and 0.5 (Fig. 4a). The
task-specific ImageMol model performed significantly worse
than DrugChat, with F1 scores between 0.36 and 0.43.

Next, we focused on predicting the administration routes of
molecules, a highly complex task that requires a deep under-
standing of the molecule’s physicochemical properties, its
interactions with biological tissues, and its pharmacokinetic
profile. Since a single drug molecule can be administered
through multiple routes - for example, amoxicillin can be
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Fig. 4 | DrugChat accurately predicts drug properties represented as discrete categories. a-c, In tasks of predicting human cell cytotoxicity (a), administration routes
(b), and prodrug status (c), DrugChat achieves significantly higher F1 scores compared to leading LLMs and specialized classifiers. d, DrugChat’s integration of molecular
graph and image modalities outperformed the variants that rely on either graph or image modality alone.

given orally or intravenously - we instructed DrugChat to
predict a binary ‘yes/no’ for each route type, rather than
limiting it to selecting only one option from all possible
routes. DrugChat achieved F1 scores between 0.59 and
0.67, substantially surpassing baseline LLMs, which had F1
scores ranging from 0.23 to 0.47 (Fig. 4b). DrugChat also
exceeded the performance of the task-specific ImageMol
model significantly, which recorded F1 scores between 0.47
and 0.52.

Lastly, we predicted the potential of a molecule to act
as a prodrug. A prodrug is a compound that, after ad-
ministration, undergoes metabolic conversion within the
body to become a pharmacologically active drug. Unlike
active drugs, which exert their effects immediately upon
administration, prodrugs are initially inactive or less active
and require chemical transformation by the body’s metabolic
processes to release their therapeutic potential. DrugChat
achieved an F1 score of 0.65 (Fig. 4c), significantly out-
performing baselines including GPT-4 (F1 score of 0.42),
LLaMa (0.02), ChatGLM (0.37), FastChat-T5 (0.36), and
ImageMol (0.56).

DrugChat enables dynamic, iterative exploration of
drug mechanisms and properties
DrugChat, as a multi-modal LLM, facilitates multi-turn in-
teractions with users regarding the same molecule. The user

initiates the conversation with a question, to which DrugChat
generates a response. Based on this response, the user can ask
follow-up questions, enabling an iterative dialogue process.
Fig. 5 illustrates a conversation between DrugChat and a hu-
man user, where DrugChat provides accurate and detailed
responses regarding the indication and pharmacodynamics
of the input molecule. When the user inquired about the
molecule’s indication, DrugChat accurately responded that it
helps control blood sugar in individuals with type 2 diabetes
by stimulating the pancreas to produce more insulin. Fol-
lowing this, the user asked what type of cells the molecule
stimulates to release insulin, and DrugChat correctly iden-
tified pancreatic beta cells. The user then inquired about
the molecule’s side effects and how to manage them, and
DrugChat responded with appropriate information. Lastly,
when asked about the site of the molecule’s metabolism,
DrugChat accurately responded that it occurs in the liver.
Through interactive dialogue with DrugChat, the user was
able to achieve a more in-depth exploration of the molecule,
uncovering increasingly detailed and nuanced information.
DrugChat consistently understood the user’s intent and pro-
vided precise responses.

DrugChat’s integration of molecular graph and image
modalities surpasses single-modality variants
To assess the impact of different molecule encoders on
DrugChat’s performance, we developed two additional vari-
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What is the indication of the compound?

Indicated for the treatment of type 2 diabetes mellitus in adults and 
children and adolescents (4 years and older) as an adjunct to diet and 
exercise to improve glycemic control in patients with type 2 diabetes 
mellitus.

What are its pharmacodynamics?

It is a sulfonylurea class medication that is used to control blood sugar 
levels in people with type 2 diabetes. It works by stimulating the 
pancreas to produce more insulin, a hormone that regulates blood 
sugar levels in the body. The medication is usually taken orally, usually 
as a tablet or a capsule, and is usually taken with meals. The 
medication works by increasing the sensitivity of cells in the pancreas 
to insulin, allowing the pancreas to produce more insulin to regulate 
blood sugar levels. The medication is usually taken with meals to help 
regulate the levels of blood sugar throughout the day.

It is not a first line medication for diabetes, it should be used in 
conjunction with diet and exercise, and should be used in patients who 
have not been able to control blood sugar levels with diet and exercise 
alone. It is also important to note that the efficacy and safety of the 
medication may vary among patients, and that the dosages, as well as 
the duration of the treatment, should be tailored to the individual 
patient, depending on the severity of the diabetes, the patient’s age, 
and other factors such as comorbidities.

What kind of cells does the compound stimulate to release insulin?

The medication works by stimulating the pancreas to produce more 
insulin, a hormone that regulates blood sugar levels in the body. 
Specifically, it increases the sensitivity of cells in the pancreas called 
pancreatic beta cells. These cells are responsible for producing and 
releasing insulin, a hormone that regulates the release of glucose from 
the liver and the absorption of glucose by the body’s cells. When the 
pancreas detects high levels of glucose in the blood, it will release 
insulin to bring the glucose into the cells...

What side effects does the compound cause and how to deal with them?

The side effects can vary depending on the individual and the specific 
medication used, but some common side effects of sulfonylureas 
include:
1. Hypoglycemia: can cause low blood sugar (hypoglycemia) which can 
lead to symptoms such as dizziness, weakness, and sweating...
2. Dizziness or lightheadedness...
To deal with these side effects, it’s important to monitor blood sugar 
levels closely, especially when the patient starts taking the medication, 
and to suspect an hypoglycemia if the patient has symptoms of 
dizziness, weakness, and sweating...

Input a SMILES string: 
[H][C@@]12CCC[C@]1([H])CN(C2)NC(=O)NS(=O)(=O)C1=C-
C=C(C)C=C1

In which organ is the compound metabolized?

This medication is a sulfonylurea class medication like chlorpropamide. It 
is metabolized in the liver by a specific enzyme, CYP2C9. CYP2C9 is the 
isoform of the liver cytochrome P450. This enzyme is responsible for 
metabolizing the compound, this means that it is broken down into 
various metabolites which are then excreted from the body...

Fig. 5 | An exemplar multi-turn dialogue between DrugChat and a user regarding the same molecule.

ants: DrugChat-Graph, which exclusively utilized molecu-
lar representations derived from the molecular graph via the
graph neural network, and DrugChat-Image, which relied
solely on representations extracted from the molecular image
using the convolutional neural network (Methods). We com-
pared the performance of these variants against the original
DrugChat, which integrates representations extracted from
both the image and graph. The original DrugChat consis-
tently outperformed both variants across multiple prediction
tasks (Fig. 4d), which demonstrates that the combined use of
both image and graph representations is superior to relying
on either modality alone. This can be attributed to the com-
plementary nature of these modalities in capturing different
aspects of molecule information. The molecular graph cap-
tures the topological relationships between atoms, which are
crucial for understanding the molecule’s intrinsic properties,
such as bond connectivity, electronic structure, and chemi-
cal reactivity. On the other hand, the molecular image high-
lights spatial patterns and visual features that are often criti-
cal in understanding the geometric and stereochemical prop-
erties of the molecule. These features are particularly rele-
vant in identifying functional groups or understanding spa-
tial interactions between atoms, which can influence molec-
ular behavior and interactions with biological targets. By in-
tegrating both modalities, DrugChat benefits from the rich,
multi-faceted information that each modality offers, leading
to a more comprehensive and nuanced understanding of the
molecule. In contrast, relying on a single modality may over-
look critical information, leading to less effective predictions
and a narrower understanding of the molecule’s characteris-
tics.

Discussion

DrugChat utilizes a single, unified framework to address
a wide range of prediction tasks associated with drug
discovery and development, including predicting indications,
pharmacodynamics, mechanisms of action, cytotoxicity,
administration routes, and so on. This is achieved simply
by altering the prompts, thereby eliminating the need for
model retraining. This approach significantly reduces the
complexity associated with developing and maintaining a
suite of specialized models, making it particularly beneficial
in environments where resources for model development
and maintenance are limited, or where rapid iteration and
deployment are crucial. By enabling the model to extract
and integrate knowledge across various domains, DrugChat
can potentially identify patterns and relationships that might
be missed when using isolated models. This cross-domain
learning enhances the model’s ability to generalize across
different tasks, leading to more robust and accurate pre-
dictions. This is evidenced by its superior performance
compared to specialized models like ImageMol (Fig. 4a-c),
which, due to their narrower focus and limited capacity to
integrate cross-domain knowledge, may overlook certain
patterns, leading to less optimal predictions.

As a multi-modal LLM, DrugChat generates detailed,
human-like textual predictions across a wide array of
complex drug-related aspects, including indications, mech-
anisms of action, and pharmacodynamics (Fig. 3). This
marks an important shift from traditional models that often
oversimplify the intricate and multifaceted nature of drug
mechanisms and properties into predetermined categories.
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For instance, a drug’s mechanism of action is rarely a single,
straightforward pathway but rather involves a series of
interconnected biological processes that can vary depending
on the context. Categorical representations may obscure
these layers of complexity, leading to a less nuanced un-
derstanding. In contrast, DrugChat’s free-form predictions
naturally and comprehensively articulate these complex-
ities, capturing subtle interactions, rare side effects, and
context-dependent variations. This richness of detail ensures
that DrugChat can support more informed decision-making
in drug development, personalized medicine, and clinical
practice. By generating predictions that mirror the narrative
style found in scientific literature and clinical discussions,
DrugChat aligns more closely with how healthcare profes-
sionals and researchers conceptualize and communicate drug
information.

Unlike traditional models which typically provide static,
one-off predictions, DrugChat can dynamically respond to a
sequence of user queries, enabling users to uncover insights
that might be missed in a single-pass analysis and allowing
for a deeper investigation into various aspects of a molecule
in question without needing to input new data or switch
between different models. Each query builds on the previous
ones, with DrugChat using the context established in earlier
exchanges to refine and enhance its subsequent predictions.
This interactive approach not only makes DrugChat more
user-friendly but also aligns with the iterative nature of
scientific inquiry. Moreover, this functionality allows for
collaborative research efforts, where multiple stakeholders
can engage with DrugChat over time, refining and expanding
the analysis as new questions and data emerge.

One challenge with DrugChat lies in the interpretabil-
ity of its predictions. While the model excels at generating
natural language outputs that facilitate user interaction, the
decision-making process behind these predictions remains
largely opaque, typical of the black-box nature of LLMs.
This opacity can become problematic in critical healthcare
contexts where understanding the model’s reasoning is
essential, particularly for tasks like drug mechanism predic-
tions or risk assessments, which require a high degree of
trust and transparency. Without clear insight into how the
model reaches its conclusions, it can be difficult to validate
or scrutinize its outputs. To address this, our future work
will focus on developing more interpretable LLMs and
integrating advanced explainability techniques.

The development of DrugChat opens up numerous promising
research directions. One key area for future work involves
enhancing the model’s accuracy and consistency by incor-
porating more diverse training datasets, especially those
that represent underexplored drug categories. Additionally,
integrating DrugChat with complementary computational
tools, such as molecular docking simulations or quantum
mechanical calculations, could yield a more holistic and
synergistic approach to drug discovery. Exploring the

application of DrugChat in real-world drug discovery
pipelines is another exciting direction, with potential uses in
predicting drug-drug interactions, optimizing formulations,
and identifying off-target effects. Moreover, expanding the
model’s capability to handle larger molecule structures,
such as biologics, could significantly increase its utility and
impact within the pharmaceutical industry.
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Methods

Data collection and processing
We curated training data for DrugChat from public com-
pound molecule databases, including ChEMBL, PubChem,
and DrugBank. The ChEMBL database1 contains informa-
tion for 2,354,965 chemical compounds. We downloaded
the SQLite version of the dataset, last updated on February
28, 2023. From the full dataset, we collected 14,816 com-
pounds that include drug-related information. The PubChem

1https://www.ebi.ac.uk/chembl/

database2 contains information of 66,469,244 chemical
compounds. We used the data version last updated on May
9, 2023. Of these compounds, 19,319 include drug-related
information. The DrugBank database3 (version 5.1.10,
released on January 4, 2023) contains 16,428 drug entries.
From this, we selected 11,583 entries with available SMILES
strings, all classified as small molecules, excluding those
categorized as biotech. After further filtering to remove
entries lacking annotations for drug indications, pharma-
codynamics, or mechanisms of action, we retained 3,700,
6,649, and 5,846 drug molecules from ChEMBL, PubChem,
and DrugBank, respectively. For each drug, we collected
its SMILES string along with various attributes including
free-form attributes such as indications, pharmacodynamics,
and mechanisms of action, as well as categorical attributes
like administration routes and prodrug status.

Using these drugs and their annotated attributes, we
curated the training data for DrugChat. For each attribute
a of a drug molecule m, we created a triplet consisting of
the molecule’s SMILES representation, a textual prompt
querying the value of a, and the corresponding ground
truth value for a. Each attribute type had its own tailored
prompt. For instance, for the attribute ‘drug indication’,
the corresponding prompt is ‘what is its indication?’. The
answer would be a textual description of the molecule’s
indication, provided by human experts in the ChEMBL,
PubChem, and DrugBank databases. As another example,
for the attribute ‘prodrug status’, the corresponding prompt
is: ‘can it potentially be used as a prodrug? Please answer
Yes or No.’ The ground truth answer is ‘Yes’ if the molecule
is a prodrug, and ‘No’ otherwise. In total, we curated 91,365
triplets.

Model architecture
DrugChat is a multi-modal model that integrates information
from three distinct modalities: graphs, images, and text. It
consists of a graph neural network (GNN), a convolutional
neural network (CNN), and a large language model (LLM).
For a given molecule, its SMILES string is efficiently
converted into a molecular graph and a molecular image
using the RDKit software4.

In the molecular graph, nodes correspond to the molecule’s
atoms, while edges represent the chemical bonds between
them. Each atom is defined by its atom type and chirality,
with 120 atom types in total, including a special ‘Unknown’
category for unidentified atoms. Atom chirality is cate-
gorized into four types: tetrahedral clockwise, tetrahedral
counter-clockwise, unrecognized, and other forms. These
atom type and chirality attributes serve as the initial features
for each node. Chemical bonds are characterized by type
and direction, with bond types classified as single, double,
triple, or aromatic, and bond directions as none, end upright,

2https://pubchem.ncbi.nlm.nih.gov/
3https://go.drugbank.com/releases/latest
4https://www.rdkit.org
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or end downright. These bond attributes are used as initial
features for each edge. All node and edge features are
categorical, with each category encoded as a vector with
learnable parameters. The molecular graph is input into a
pretrained GNN, specifically a graph convolutional network
(GCN) (15), to learn a representation vector for the entire
graph. The GNN leverages the graph’s connectivity, along
with the initial features of nodes and edges, to learn multiple
layers of representations for each node. Using a neighbor-
hood aggregation approach, the GNN iteratively updates a
node’s representation vector by aggregating the representa-
tions of its neighboring nodes and edges (15). Thus, after
K layers of representation learning in the GNN, information
from nodes and edges is propagated through K-hop paths
across the graph. To obtain the feature vector for the entire
graph, an average pooling operation is applied to compute
the mean of the representation vectors for all nodes after K
layers of learning. The GNN in DrugChat consists of five
layers, with approximately 0.5 million parameters. Both
node and edge representation vectors have a dimensionality
of 300. The GNN was pretrained using a self-supervised
learning approach called context prediction (25), where the
model learns to predict a molecule’s sub-graphs based on
its neighboring sub-graphs (i.e., context). This pretraining
was performed using 2 million unlabeled molecules from the
ZINC15 database (28).

For the molecular image, we employed a pretrained
convolutional neural network (CNN) to extract a repre-
sentation vector. The CNN processes the input image
through multiple layers of 2D convolution, where each layer
applies convolutional filters to detect specific patterns in
the image or in the feature maps from the previous layer.
We used a pretrained ResNet-18 (16) model, specifically
ImageMol (24), which consists of 18 convolution layers with
a total of 11 million parameters. A global average pooling
layer converts the output of the last convolution layer to a
molecular image representation vector with a dimensionality
of 512. ImageMol was pretrained on 10 million unlabeled
images of drug-like, bioactive molecules from the PubChem
database using self-supervised learning (SSL) techniques,
such as molecular image reconstruction and contrastive
learning. These SSL algorithms enabled ImageMol to
map structurally similar molecules to nearby vectors in
the embedding space, allowing the model to learn molec-
ular properties at scale without requiring human-labeled data.

After extracting representation vectors from the molecule
using the GNN and CNN, we apply two separate multi-
layer perceptrons (MLPs), referred to as the adapters, to
transform these molecular representations into a format
compatible with the LLM. LLMs typically use Transformer
decoders (36) to model natural language as a sequence of
tokens, where each token is represented as a vector (45).
In DrugChat, the transformed molecular representations
are treated as tokens and appended to the language token
sequence, which was converted from the input prompt.

This combined sequence is then passed into the LLM,
which uses multi-head self-attention mechanisms (36) to
generate new tokens. These generated tokens form the final
prediction. DrugChat uses Vicuna-13B (35) as the LLM,
which contains 13 billion parameters. It was fine-tuned from
Llama-13B (17) on a dataset of 70K user-shared dialogues
collected from ShareGPT.com (containing conversations
between human users and ChatGPT). It retains the same
architecture as Llama-13B, including 40 Transformer layers
with 40 attention heads and an embedding dimension of
5120. Llama-13B was pretrained on a multi-terabyte text
corpus, including Wikipedia and various other sources
gathered from the Internet, to predict the next word based
on the preceding context. The adapter responsible for
converting molecular graph representations into LLM tokens
consists of two layers, with an input dimension of 300,
a hidden dimension of 5120, and an output dimension of
5120, totaling 28M parameters. Similarly, the adapter for
converting molecular image representations includes two
layers, with an input dimension of 512, a hidden dimension
of 5120, and an output dimension of 5120, amounting to
29M parameters. Both MLPs use the GELU activation
function (46) in the hidden layer.

For a target answer T that has L text tokens, DrugChat
computes the probability of generating T as follows:

p(T | M,P ) = pW (T1 | M,P )
L∏

i=2
pW (Ti | M,P,T<i) ,

(1)
where M represents the input molecule and P is the input
prompt. We denote the i-th token as Ti and all preceding
tokens as T<i. Model parameters are denoted by W . The
generated token sequence is compared to the ground truth
tokens to compute the negative log likelihood (NLL). The
parameters W are optimized by minimizing the sum of NLL
over all training data.

Model training
We trained the DrugChat model using the AdamW opti-
mizer (47) with 10 epochs, employing default parameters
β1 = 0.9, β2 = 0.999 and a weight decay of 0.01. In the
first epoch, we applied a linear warmup strategy, gradually
increasing the learning rate from 10−6 to 2 × 10−5, which
was then reduced to 10−6 using a cosine decay scheduler
over the remaining 9 epochs. The batch size was set to 16,
and training was performed on NVIDIA A100 GPU with
80GB memory.

For training the specialized classification model Image-
Mol (24), we appended a classification head to the pretrained
ResNet encoder (16). The classification head was a linear
layer, producing an output vector with dimensions matching
the number of classes in the prediction task. Given a molec-
ular image, the pretrained encoder extracts a representation,
which is subsequently passed to the classification head
to predict the class label. The training data includes ap-
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proximately 51,000 examples curated from 2,940 ChEMBL
compounds, along with about 118,000 examples from 39,000
compounds in the dataset curated by Wong et al. (21). We
optimized the model using a cross-entropy loss function and
the AdamW optimizer for 50 epochs with a batch size of 128.
The maximum learning rate was set to 10−3, while all other
optimization settings followed those used for DrugChat.

Prompts
The prompts used by DrugChat to predict cytotoxicity
to HepG2, HSkMC, and IMR-90 were ‘Is the molecule
cytotoxic to human liver carcinoma cells (HepG2)?’, ‘Is
the molecule cytotoxic to primary skeletal muscle cells
(HSkMC)?’, and ‘Is the molecule cytotoxic to human lung fi-
broblast cells (IMR-90)?’, followed by an instruction ‘Please
answer Yes or No’. The prompts used by DrugChat to predict
administration routes - oral, parenteral, and topical - were:
‘Is the molecule taken orally?’, ‘Is the molecule adminis-
tered parenterally?’, and ‘Is the molecule applied topically?’,
followed by an instruction ‘Please answer Yes or No’. For
predicting drug indications, pharmacodynamics, and mech-
anisms of action, GPT-4 was prompted with: ‘Given the
SMILES of a molecule: [a SMILES string]’, followed by
questions like ‘What is its indication?’, ‘What are its phar-
macodynamics?’, and ‘What is its mechanism of action?’.
For predicting cytotoxicity, administration routes, and pro-
drug status, baseline LLMs used similar prompts: ‘Given
the SMILES of a molecule: [a SMILES string]’, along with
questions such as ‘Is the molecule cytotoxic to human liver
carcinoma cells (HepG2)?’, ‘Is the molecule cytotoxic to pri-
mary skeletal muscle cells (HSkMC)?’, and ‘Is the molecule
cytotoxic to human lung fibroblast cells (IMR-90)?’, ‘Is the
molecule applied topically?’, ‘Is the molecule taken orally?’,
‘Is the molecule administered parenterally?’, and ‘Can it po-
tentially be used as a prodrug?’, followed by the instruction
‘Please answer Yes or No’.

Model evaluation
We evaluated the free-form predictions of drug indications,
pharmacodynamics, and mechanisms of action using both
human assessment and automated metrics.

Human evaluation. In the human evaluation, experts spe-
cializing in drug molecules assessed the model’s predictions
using a 3-point Likert scale with an additional ‘Unknown’
option. The scales were defined as follows: 1) [Correct] —
The prediction is mostly consistent with the ground truth or
a subset of the ground truth, possibly extending it with addi-
tional plausible details; 2) [Partially Correct] — The predic-
tion includes some correct descriptions but also introduces
conflicting elements when compared to the ground truth or
domain knowledge; and 3) [Incorrect] — The prediction is
incorrect, irrelevant, or incomplete. Evaluators were asked to
choose one of the three options and they did not know which
model generated the predictions.

Automatic evaluation metrics. We conducted automatic
evaluations using three metrics: semantic similarity,

BLEU (40), and METEOR (41) scores. Semantic similar-
ity was calculated as the cosine similarity between the sen-
tence embeddings of the ground-truth and model-predicted
texts, with embeddings generated using a pretrained sentence
Transformer model All-MiniLM-L6-v2 (48). Let SE repre-
sent the sentence embedding model. The embedding of the
ground-truth text tg is denoted as eg = SE(tg), while the em-
bedding of the predicted text tp is ep = SE(tp). The cosine
similarity between these embeddings is defined as

cos(eg,ep) = ⟨eg,ep⟩
∥eg∥2∥ep∥2

,

where ⟨eg,ep⟩ represents the dot product between the two
vectors, and ∥eg∥2 denotes the L2 norm of the vector eg .
With this sentence Transformer, the embeddings of seman-
tically similar sentences are positioned closer in the embed-
ding space, resulting in higher cosine similarity values. For
BLEU scores (40), we used the BLEU-1 score without ap-
plying the brevity penalty (40). The BLEU-1 score is a spe-
cial case of the general BLEU-n metric, which measures the
modified precision of n-grams (sequences of n consecutive
words). Let ŷ represent the predicted sentence, and y the
ground-truth sentence. Define Gn(ŷ) as the set of all n-grams
in the predicted sentence. Let C(s,y) be an indicator func-
tion, which equals 1 if the n-gram s appears in y; otherwise,
C(s,y) = 0. The BLEU-n score is then calculated as follows:

BLEUn(ŷ,y) =
∑

s∈Gn(ŷ) min(C(s, ŷ),C(s,y))∑
s∈Gn(ŷ) C(s, ŷ) .

The METEOR score (41) is viewed as an enhancement over
the BLEU score. It is calculated using the harmonic mean of
unigram precision and recall, with greater emphasis on recall.
Additionally, it accounts for stemming and synonym match-
ing, in addition to exact word matching.

DrugChat accurately predicts drug-related keywords
We extracted keywords related to drugs, diseases, and
medical conditions from the ground-truth answers in the
DrugBank test set using the Python library scispaCy (44).
After extraction, we manually refined the keyword set by
removing less relevant keywords, duplicates, and those
appearing in fewer than three ground-truth answers. For each
keyword in a ground-truth answer, scispaCy was used
to identify semantically similar terms in the corresponding
DrugChat-predicted text. If the similarity between the
keyword and a predicted term exceeded 0.8 (on a scale of 0
to 1), we considered the term a match to the keyword. The
matched terms were manually verified to ensure they were
semantically similar to the corresponding keywords. We
define recall for a keyword as the ratio of the number of
matches to the keyword’s frequency. Extended Data Fig. 1
presents the recall and frequency of keywords.

DrugChat achieved a recall between 30% and 80% for
the majority of keywords, despite the fact that most key-
words occur fewer than ten times. This low frequency poses
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challenges for accurate prediction. However, DrugChat
demonstrated strong recall in many cases, such as 75% for
the keyword ’respiratory depression’ and 69% for ‘hyper-
tension’. Although DrugChat shows lower recall for some
medical keywords, this does not necessarily indicate poor
performance in predicting molecule functions related to
those keywords. For example, while DrugChat incorrectly
predicted that remimazolam is used to treat insomnia, the
drug is actually used for the maintenance of sedation during
short procedures, a function related to insomnia.

Data availability
The dataset curated and used in this work is available at
https://drive.google.com/drive/folders/
1ofHOV5UFJUf2Xb-UljbK--wILF-_vBod?usp=
sharing

Code availability
The source code of this work is available at https://
github.com/youweiliang/drugchat
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Extended Data Fig. 1 | DrugChat achieved good recall rates in predicting keywords related to drugs, diseases, and medical conditions. The x-axis represents the
frequency of these keywords.
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