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Cryo-electron tomography provides an unprecedented view of
cellular architecture, yet extracting meaningful biological in-
sights remains challenging. Segmentation is a crucial step in
this process through its ability to identify structural relation-
ships between subcellular components visible in cryo-electron
tomography data. While segmentation pipelines were histori-
cally low throughput, recent advancements in deep learning
have significantly improved their automation, accuracy, and
scalability. This review explores how these innovations rede-
fine best practices for segmentation and accelerate biological
discovery. This article highlights the critical role of segmenta-
tion in unlocking the full potential of cryo-electron tomogra-
phy—not only for resolving macromolecular structures but also
for quantifying their impact on subcellular organization and
function.
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Introduction
Cryo-electron tomography (cryo-ET) has experienced a
meteoric rise in popularity as a tool for visualizing

organellar and macromolecular structures. While
throughput in sample preparation and data collection
has improved significantly, transforming the three-
dimensional reconstructions (i.e. tomograms) into
meaningful biological insights remains a significant
hurdle. Just as atomic model building is key in single-
particle cryo-electron microscopy (cryo-EM), segmen-
tation is essential for turning tomographic data into
www.sciencedirect.com
meaningful structural insights. Segmentation involves
labeling each voxel in the tomogram according to its
associated subcellular feature. The resulting segmen-
tations not only reveal complex spatial relationships in
three dimensions but, importantly, can serve as starting
points for nearly all downstream analyses in cryo-ET,
including subtomogram averaging and quantitative ul-
trastructural analyses (i.e. morphometrics). Historically,

segmentation was a time-consuming, laborious process,
typically reserved for a few ‘figure-worthy’ representa-
tive tomograms. The application of convolutional neural
networks, particularly the U-net architecture [1], has
automated segmentation to the point where we can
think about it not as a ‘beautification’ technique but as a
routine part of the processing workflow. This review will
describe the modernization of segmentation workflows
and demonstrate how they are essential for unlocking
the full potential of cryo-ET for cellular structural
biology (Figure 1).

‘Perfecting’ imperfect data is the first step
toward automated segmentation
One of the first challenges in automating segmentation
for cryo-ET data is that the input is inherently
imperfect. The most apparent imperfection is the low
signal-to-noise ratio (SNR) due to the low-dose imag-

ing parameters required for imaging radiation-sensitive
vitrified biological material, which makes segmentation
challenging. Software like cryo-CARE [2], WARP [3],
and Topaz [4] build noise models using the noise2noise
algorithm [5]. By comparing the data to itself,
conceptually similar to how half-map comparisons
in single-particle cryo-EM help isolate true signal,
these noise models learn to distinguish signal
from noise in the raw tomograms. Denoising algorithms
suppress the high-frequency noise while preserving
structural detail, resulting in tomograms with enhanced

contrast that improve automated downstream seg-
mentation tasks.

One drawback of these approaches is that increased
image contrast often comes at the cost of potentially
suppressing ‘real’ high-frequency structural information.
The recently released CryoSamba [6] denoising soft-
ware differs from other approaches by leveraging
neighboring slices within the tomogram to train the
network to distinguish consistent signal from random
noise. These results in improved contrast in tomograms
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Figure 1

Modern segmentation workflows streamline downstream analysis of
macromolecular and organellar structure from cryo-ET data. (a)
‘Perfecting’ imperfect tomographic data by applying algorithms designed
to boost signal-to-noise is a common first step in automated segmentation
pipelines. (b) The application of deep learning, particularly the U-net ar-
chitecture, facilitates automated semantic segmentation of multiple
organellar feature classes (i.e. membranes and filaments) from cryo-
electron tomography data. (c) Transforming voxel segmentations into
geometric models is a critical step for downstream data analysis. (d)
Geometric models of filaments and membranes facilitate subtomogram
averaging by providing a priori information about an associated macro-
molecule’s location and orientation. (e) Geometric models enable the
quantification of organellar ultrastructure through morphometrics analysis.
(f) Segmentation-guided contextual structure mapping quantitatively re-
veals the spatial relationship between macromolecular structures and
their local subcellular environment. cryo-ET, cryo-electron tomography.
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with less aggressive suppression of high-frequency
structural information compared to other denoising ap-
proaches. While most segmentation workflows to date
have been performed in heavily binned data, typically at
10e20 Å pixel sizes, recent improvements with Cryo-
Samba suggest a future shift toward using unbinned data
(2e3 Å) for segmentation. This could enable segmen-
tation itself to capture high-frequency variations in

cellular ultrastructure that more faithfully reflect the
true underlying biological signal.

Aside from low SNR, tomographic data also suffers
from artifacts due to incomplete sampling that distort
cellular structures, causing spurious or inaccurate
segmentation in some areas of the tomogram. The
‘missing wedge’ is an artifact that arises from the
limited tilt range during collection due to the physical
constraints of the microscope. Isonet [7] and Deep-
DeWedge [8] both harness deep learning to recover

the ‘missing wedge’ and perform image denoising on
tomographic data. Cryo-TIGER [9] uses deep learning
to recover information lost due to discrete tilt angle
sampling during data collection, and initial bench-
marking demonstrates that this can improve mem-
brane segmentation. While it is easy to get caught up
in finding the optimal data ‘perfection’ approach, we
have found that applying any of the software
mentioned above can improve segmentation accuracy
over unprocessed data. Therefore, in practice, I
recommend prioritizing a strategy that balances ease

of use, automation, and accuracy for your segmenta-
tion workflow (Figure 1a).
The U-Net architecture revolutionized the
semantic segmentation of cryo-ET data
Traditionally, feature localization (i.e. particle picking)

and segmentation were treated as distinct tasks in cryo-
ETworkflows, with localization focusing on identifying
individual macromolecules and segmentation providing
labels for cellular ultrastructure. However, the devel-
opment of the U-net-based approaches [1] has blurred
this distinction, as these methods have proven suc-
cessful at both labeling subcellular features and
detecting macromolecular complexes simultaneously
(Figure 1b). Beyond label assignment, segmentation
outputs can be leveraged as ‘masks’ to filter false pos-
itives from template matching, including for cytosolic

proteins. This exemplifies how prioritizing segmenta-
tion early in the workflow can enhance the specificity
and efficiency of downstream processing tasks.

EMAN2 [10] was the first U-Net-based cryo-ET seg-
mentation software and involved manually tracing pixels
within 2D slices for training. Nearly four years passed
before the release of DeepFinder [11], the first fully su-
pervised 3D U-Net for tomographic segmentation.
Shortly after, the multislice U-Net in Dragonfly [12] was
www.sciencedirect.com
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adapted to cryo-ET data, enabling the automatic seg-
mentation of multiple feature classes simultaneously. A
significant roadblock in deep learning-based approaches
for segmentation is the lack of ground truth data and/or
pretrained models that can be applied broadly across
different cryo-ET datasets. DeepPict [13] is the first
segmentation tool to offer a pretrained model on a large
dataset of expert-annotated tomograms from cryo-FIB

(focused ion beam)-milled yeast lamellae. Recently,
several groups have attempted to address the ground
truth challenge by generating simulated datasets in which
atomic or geometric models of filaments or membranes
are computationally degraded to mimic artifacts inherent
to tomographic reconstruction. These studies demon-
strate that simulated data can be used to train U-net
models for the semantic segmentation of real cryo-ET
datasets [14e16]. These efforts point to a promising
future where tomogram-like simulations could be used to
train generalizable segmentation models across a wide

range of structures, including those deposited in the
Protein Data Bank (PDB).

Due to their sensitivity to artifacts from dehydration and
chemical fixatives, cellular membranes are a common
target for cryo-ET imaging, driving significant efforts to
develop automated analysis approaches tailored to
them. For nearly a decade, TomoSegMemTV [17]
represented the state-of-the-art software for automated
segmentation of membranes from tomographic data.
However, achieving optimal performance requires fine-

tuning many parameters and manual cleanup in soft-
ware like Amira [18] or Colabseg [19]. Curated datasets
from TomoSegMemTV outputs were recently used to
generate training data for developing a robust U-net-
based approach, MemBrain v2 [20], which has become
the new gold standard in automated membrane seg-
mentation. As an alternative to generalized tools,
CryoVesNet [21] offers a tailored solution to researchers
investigating synaptic vesicles. Many of these
membrane-specific workflows are organelle-agnostic,
requiring an additional stepdoften requiring the eye
of an expert microscopistdto label membranes associ-

ated with specific organelles.
Transforming voxel segmentations to
geometric models is critical for downstream
analysis
Automated machine learning (ML)-based segmentations
typically assign labels to voxels, which produce jagged
approximations of organelle structures, a problem wors-
ened when applied to binned tomograms. Voxel spacing
also dictates the resolution of resulting measurements,
and slight imperfections in segmentations can result in
potentially pixel-dependent differences in ultrastructural
quantifications. For these reasons, converting voxel-based
segmentation into vectors or triangle meshes provides a
more continuous and mathematically defined
www.sciencedirect.com
representation of structures that is ideal for downstream
structural analysis (Figure 1c).

Surface mesh models represent a membrane as a
continuous plane partitioned into vertices and polygons
independent of pixel size. Pycurv [22] was the first
program that performed this transformation on seg-
mentations from cryo-ET data, enabling the calculation

of membrane features such as surface normals and
curvature. This approach worked well for simple sphere
membrane segmentations but performed suboptimally
for more complex, highly pleomorphic membrane seg-
mentations. In these cases, the workaround was to
generate a manual ‘in-painted’ volume segmentation
such that the segmentation itself is the membrane and
the luminal space in between. This requires significant
user intervention and becomes more complicated
because complex membranes, such as inner mitochon-
drial membrane cristae, do not often contain a clear

‘inside’ or ‘outside.’ To tackle this challenge, we
developed a workflow that converts voxel segmenta-
tions into oriented point clouds that can be transformed
into surface meshes using a screened Poisson surface
reconstruction algorithm [23].

For filaments, the best strategies to generate geometric
models for downstream analysis used template-based
correlation to generate vectors representing the fila-
ment’s central line [24e26]. The fiber tracing module
in Amira incorporates these algorithms and is a popular

method for labs with access to this software. A major
limitation of these correlation-based methods is that
they often result in many false positives that must be
manually curated. Streamlined workflows harness deep
learning approaches such as Dragonfly or DeePiCt as a
first-pass detection of different filamentous assemblies
in cellular tomograms, followed by tracing of the binary
segmentation output using the Xfiber module in Amira
[15,27,28]. This process can also be iterated to maxi-
mize both training and model generation effi-
ciency [28].
Segmentation guides subtomogram
averaging
The artifacts and low SNR of tomograms make
computationally identifying and aligning individual
macromolecules through subtomogram averaging diffi-

cult. These challenges have historically been remedied
using geometric models to provide a priori information
about a macromolecule’s location and orientation within
the tomogram [29e31]. However, most models must be
generated manually. A workaround is to convert the
models generated through automated segmentation into
file formats (i.e. tables) that can be read and processed
by programs like Dynamo [26,28,32] (Figure 1d), a
pipeline streamlined thanks to the collaborative online
platform [33] https://teamtomo.org/.
Current Opinion in Structural Biology 2025, 93:103114
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While geometric information can help identification,
strong signals from membranes and filaments can
paradoxically complicate alignment. One clever strat-
egy used the membrane segmentation to dampen the
membrane signal before particle extraction [34]. The
authors note that this membrane signal suppression
strategy was essential for resolving the a-amino-3-hy-
droxy-5-methyl-4-isoxazolepropionic acid (AMPA)

receptor on neuronal synapses, offering an alternative
to traditional parameter optimization and masking-
based approaches in subtomogram averaging workflows.
Segmentation quantifies organelle shape
through morphometric analyses
While other volumetric EM methods may excel at
surveying larger cell volumes, cryo-ET provides sig-
nificant benefits in resolution to glean subtle, albeit
often functionally relevant, differences in subcellular
architecture. Substantial advances in automated
cryo-FIB milling [35] now facilitate the routine gen-
eration of dozens of lamellae with minimal manual
intervention, transforming a technique with a dismally
low throughput into arguably one of the highest-

resolution cell biology approaches available for the
quantitative analysis of ultrastructure
(i.e. morphometrics) (Figure 1e). Mitochondria are a
popular target for morphometrics analysis, and
segmented models have been used to quantify the ar-
chitecture of mitochondrial constriction sites [36,37],
the changes that occur to mitochondrial cristae upon
disease pathology [38], or in response to genetic
manipulation of key cristae remodelers [39]. We
recently developed a ‘surface morphometrics pipeline’
[23] to streamline the ultrastructural quantification of

several membrane parameters relevant to organellar
function, including membrane distance, curvature, and
orientation. This pipeline has been used to investigate
the remodeling of mitochondria [23,40], the endo-
plasmic reticulum [41], autophagosomes [42], the
nuclear envelope [43,44], the plasma membrane [45],
and viral replication vesicles [46]. Similar morpho-
metrics approaches are available to analyze filaments
[47] and have been recently applied to generate
mechanistic models for the role of actin filaments
during glucose-stimulated insulin secretion [48],

neuronal growth cone formation [27,49], and plasma
membrane mechanics [50].

Segmentation models can be used to quantitatively
analyze the voxel intensity values within the tomogram.
This analysis can produce a ‘map’ of densities within a
fixed distance of the membranes, facilitating interactive
or automated identification of membrane-associated
proteins [20,51]. Segmentation-guided density analysis
is also extensively used to identify associated densities
radiating from synaptic vesicles [52e54]. We and others

have used segmentation and surface mesh models to
Current Opinion in Structural Biology 2025, 93:103114
perform local density sampling to measure membrane
thickness, revealing local variations in bilayer thickness
across organelles [46,55,56].

Segmentation contextualizes
macromolecular structure with subcellular
environment
The most powerful application of cryo-ET is its ability
to not only resolve structures but also quantitatively
assess how these structures influence and are influ-
enced by the local subcellular architecture (Figure 1F).
We recently used our surface mesh models to identify
and subsequently solve the structure of cytoplasmic
ribosomes likely engaged in co-translational protein
import [57] (Figure 2a). We then isolated the ‘patches’

of triangles within the surface mesh closest to these
import-primed ribosomes and demonstrated that the
distance between the outer and inner membrane at
these regions is significantly reduced relative to the
other parts of the membrane (Figure 2b). Another
group used a similar segmentation-guided strategy to
solve the structure and organization of a different
population of cytoplasmic ribosomesdthose that use
the mitochondrial outer membrane as a scaffold to
‘hibernate’ to prevent translation during glucose
depletion [58]. Segmentation-guided contextual

structure mapping approaches have also revealed the
Ebola virus nucleocapsid assembly process [32], the
life cycle of apicomplexan parasites [59,60], and stor-
age mechanisms utilized by mammalian oocytes that
enable mammalian development [61].

Three-dimensional model visualization
hides the noise of tomographic data
Communicating complex three-dimensional informa-
tion to the scientific community is equally important as
generating and processing the segmented models with
downstream analysis approaches. Several ML-based
automated segmentation software, including EMAN2
[10], DeepPiCt [13], and Dragonfly [12], have graphical
user interfaces (GUIs) for visualizing the resulting
output semantic segmentations. Software like Amira
[18], blik [62], Blender [63], Surforama [51], and ArtiaX
[64] can simultaneously render segmentations and 3D

geometric models directly overlaid on the tomographic
volumes. ParaView [65] and PyVista [66] enable visu-
alization of the morphometrics quantifications on the
surface mesh reconstructions, highlighting local changes
in ultrastructure.
Reconstructing the future of segmentation
Segmentation is the gateway to almost every downstream
analysis and should, therefore, be prioritized in modern
cryo-ET processing pipelines. Automation must be
balanced with the ability to customize to a given project,
and current efforts to streamline these steps are prom-
ising [67,68]. Increased automation hopefully means
www.sciencedirect.com
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Figure 2

Surface mesh-guided subtomogram averaging and structure mapping analysis. (a) Import-oriented ribosomes were identified by selecting ribo-
somes (cyan) with their peptide exit tunnel (yellow arrow) pointed toward the mitochondrial membrane surface model (dark gray). This process was
repeated for all ribosomes in the dataset to produce a subtomogram average structure of a cytoplasmic ribosome oriented for import at the mitochondrial
membrane. (b) Local ‘patch’-based membrane surface mesh analysis identified clusters of import-oriented ribosomes associated with reduced outer-to-
inner mitochondrial membrane (i.e. intermembrane) distances relative to randomly oriented ribosomes (tan) at the mitochondria surface. This figure is
generated from data associated with EMD-48751 [57].
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more ground truth data, as impressively demonstrated by
the developers of Ais [67] and TARDIS [68], who used
their approach to segment over ten thousand tomograms

from the Chan Zuckerberg Initiative (CZI) cryo-ET data
portal [69]. As automated segmentation becomes a
household name in cryo-ETworkflows, the field will soon
need to develop deposition standards and validation
metricsdan area currently under development [70].
www.sciencedirect.com
Standardizing the deposition of models and their corre-
sponding morphometrics alongside sample information
(i.e. genotype or chemical perturbation) could potentially

enable mathematical modeling that incorporates com-
plementary data on kinetics, forces, and dynamics. This
paves the way for a future where segmentations are
transformed into molecular movies that bring static cryo-
ET images to life.
Current Opinion in Structural Biology 2025, 93:103114
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